
Classes and Objects: Definitions

Chapter3: Introduction to
Classes and Objects

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 2

Objectives

•What is an object
•What is a class
•UML representation of a class
•Objects and Instance variables
•Primitive types and reference type
•Practical Organization

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 3

Let’s consider the following

• Let’s consider two doors D1 and D2.

• We aim to develop an application monitoring these
doors.

• What actions may be applied on these doors:
• Open and close.

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 4

Procedural Programming
• In Procedural programming:

• The doors are considered as passive entities of
the real world with no interaction with their
environments.

• Two robots (procedures) with specific roles are
created: one for Opening doors, the other for
closing.

Open(doorId) Close(doorId)

• In order to open or to close a given door, the
user should:

Order the appropriate robot to perform the
required action on the specified door.

– Open(d); or
– Close(d); where d is either D1 or D2

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 5

Object Oriented Programming

• In Object-Oriented programming:
• The doors are considered as active entities of

the real world capable of interacting with their
environments.

• Each one of them offers two services open and
close.

Open() Close()
• In order to open or to close a door, the user

should:
Order the appropriate door to perform the required

action.
– d.Open(); or
– d.Close(); where d is either D1 or D2

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 6

Objects

• Objects are key-concept to understand object-
oriented technology.

• Objects are entities of the real-world that may
interact with their environments by performing
services on demand.

• Examples of real-world objects: your Car, your
Cell-phone, the coffee slot-machine.

• Each Nokia-N71 cell-phone is an object and
may execute some services.

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 7

Classes

• Objects of the real world may be
classified into types: Cars, Cell-
Phones, CD Players, etc.

• Objects of the same type have the
same characteristics and are
manufactured using the same
blueprint.

• A class is a blueprint or prototype
from which objects of the same type
are created.

• A class describes a set of objects
having the same characteristics and
offering the same services.

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 8

Object Oriented Basic Principles

• Abstraction
• Encapsulation
• Information Hiding
• Message Passing
• Overloading

• Inheritance
• Overriding
• Polymorphism
• Dynamic Binding

• Information hiding, Message passing and
Overloading are covered by chapter 5 of this
course.

• Inheritance, Polymorphism, Overriding and
Dynamic binding are discussed in CSC 113.

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 9

Abstraction Principle
• Data Abstraction

– In order to process
something from the real
world we have to extract
the essential characteristics
of that object.

– Data abstraction is the
process of:

• Refining away the
unimportant details of an
object,

• Keeping only the useful
characteristics that define
the object.

– For example, depending on
how a car is viewed (e.g. in
terms of something to be
registered, or alternatively
something to be repaired,
etc.) different sets of
characteristics will emerge
as being important.

• Functionality Abstraction
– Modeling functionality

suffers from
• unnecessary functionality

may be extracted,
• or alternatively, an

important piece of
functionality may be
omitted.

– Functionality abstraction is
the process of determining
which functionality is
important.

view

view

view

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 10

Encapsulation Principle

• Abstraction involves reducing a real world
entity to its abstraction essential defining
characteristics.

• Encapsulation extends this idea by also
modeling and linking each data of an entity
to the appropriate functionality of that
entity.

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 11

Encapsulation Gives Classes
• OOP makes use of

encapsulation to ensure that
data is used in an appropriate
manner.
– by preventing from

accessing data in a non-
intended manner (e.g. asking
if an Integer is true or false,
etc.).

• Through encapsulation, only a
predetermined appropriate
group of operations may be
applied (have access) to the
data.

• Place data and the operations
that act on that data in the
same class.

• Encapsulation is the OO
principle that allows objects to
contain the appropriate
operations that could be
applied on the data they store.

– My Nokia-N71 cell-phone
stores:

• My contacts,
• Missed calls
• … etc.

– My Nokia-N71 may perform
the following operations on
the data it contains:

• Edit/Update/Delete an
existing contact

• Add a new contact
• Display my missed calls.
• …etc.

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 12

UML Representation of a Class

• UML represents a class with a rectangle having 3
compartments stacked vertically.

• The top compartment shows the class's name.
• The middle compartment lists the attributes.
• The bottom compartment lists the operations: methods or

services.

Methods
(Services)

Attributes

ClassName

- att1: dataType1
-…
- atti: dataTypei

+ m1(…): dataType1
+ ...
+ mj(…): dataTypej

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 13

Attribute

• An attribute is an abstraction of a single
characteristic possessed by all objects of the
same class.

• An attribute has a name unique within the
class.

• There are two types of attributes:
• Class attributes

– Independent of any object and their values are shared by
all objects of the class.

• Instance attributes
– Dependent to the objects and their values are associated

with and accessed through objects.

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 14

Declaring a Class with Java

public class ClassName {

// Attributes

// Methods (services)

}

Methods
(Services)

Attributes

ClassName

- att1: dataType1
-…
- atti: dataTypei

+ m1(…): dataType1
+ ...
+ mj(…): dataTypej

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 15

Declaring Attributes With Java

<modifiers> <data type> <attribute name> ;

public String studentName ;

ModifiersModifiers Data TypeData Type NameName

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 16

public class Course {

// Attributes
public String studentName;
public String courseCode ;
// No method Members

}

Example of a Class Declaration
with Java

	Slide Number 1
	Objectives
	Let’s consider the following
	Procedural Programming
	Object Oriented Programming
	Objects
	Classes
	Object Oriented Basic Principles
	Abstraction Principle
	Encapsulation Principle
	Encapsulation Gives Classes
	UML Representation of a Class
	Attribute
	Declaring a Class with Java
	Declaring Attributes With Java
	Example of a Class Declaration with Java

