Chapter 4: Control structures

Repetition

Loop Statements

After reading and studying this Section, student should be able to

- Implement repetition control in a program using while statements.
- Implement repetition control in a program using do-while statements.
- Implement a generic loop-and-a-half repetition control statement
- Implement repetition control in a program using for statements.
- Nest a loop repetition statement inside another repetition statement.
- Choose the appropriate repetition control statement for a given task

Definition

- Repetition statements control a block of code to be executed for a fixed number of times or until a certain condition is met.
- There are three types of repetition:
 - Count-controlled repetitions terminate the execution of the block after it is executed for a fixed number of times.
 - Sentinel-controlled repetitions terminate the execution of the block after one of the designated values called a *sentinel* is encountered.
 - Flag-controlled repetitions terminate the execution of the block after one of the designated values called a *sentinel* is encountered.
- Repetition statements are called loop statements also.

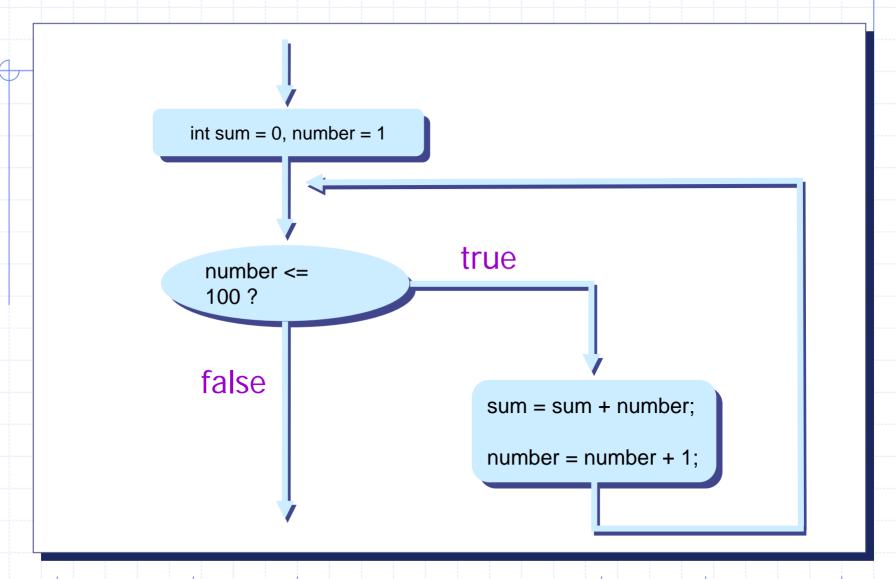
The while Statement

```
int sum = 0, number = 1;
while ( number <= 100 ) {
    sum = sum + number;
                                            These statements are
                                            executed as long as
                                            number is less than or
                                            equal to 100.
    number = number + 1;
```

Page 4

Dr. S. GANNOUNI & Dr. A. TOUIR

Syntax for the while Statement


```
while ( <boolean expression> )
                     <loop body>
                                             Boolean Expression
               while ( inumber <= 100
                           sum + number;
                   sum
loop body
                  number = number + 1;
```

Dr. S. GANNOUNI & Dr. A. TOUIR

Introduction to OOP

Page 5

Control Flow of while

Page 6

Dr. S. GANNOUNI & Dr. A. TOUIR

More Examples

1)

```
int sum = 0, number = 1;
while ( sum <= 1000000 ) {
    sum = sum + number;
    number = number + 1;
}</pre>
```

Keeps adding the numbers 1, 2, 3, ... until the sum becomes larger than 1,000,000.

2

```
int product = 1, number = 1,
    count = 20, lastNumber;

lastNumber = 2 * count - 1;

while (number <= lastNumber) {
    product = product * number;
    number = number + 2;
}</pre>
```

Computes the product of the first 20 odd integers.

Loop Logical Errors

Goal: Execute the loop body 10 times.

```
count = 0;
while ( count < 10 ){
     . . .
     count++;
}</pre>
```

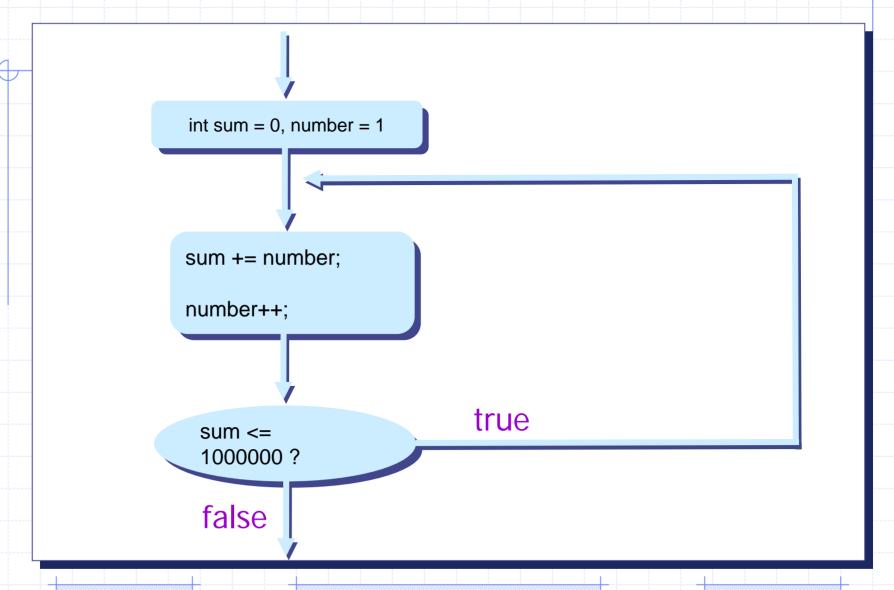
1 and 3 exhibit off-by-one error.

The do-while Statement

```
int sum = 0, number = 1;
do {
                                           These statements are
   sum += number;
                                           executed as long as sum
                                           is less than or equal to
   number++;
                                           1,000,000.
 while ( sum <= 1000000 );
```

Page 9

Dr. S. GANNOUNI & Dr. A. TOUIR


Syntax for the do-while Statement <loop body> while (<boolean expression>); do sum += number; loop body number++; sum <= 1000000 while (**Boolean Expression**

Dr. S. GANNOUNI & Dr. A. TOUIR

Introduction to OOP

Page 10

Control Flow of do-while

Page 11

Dr. S. GANNOUNI & Dr. A. TOUIR

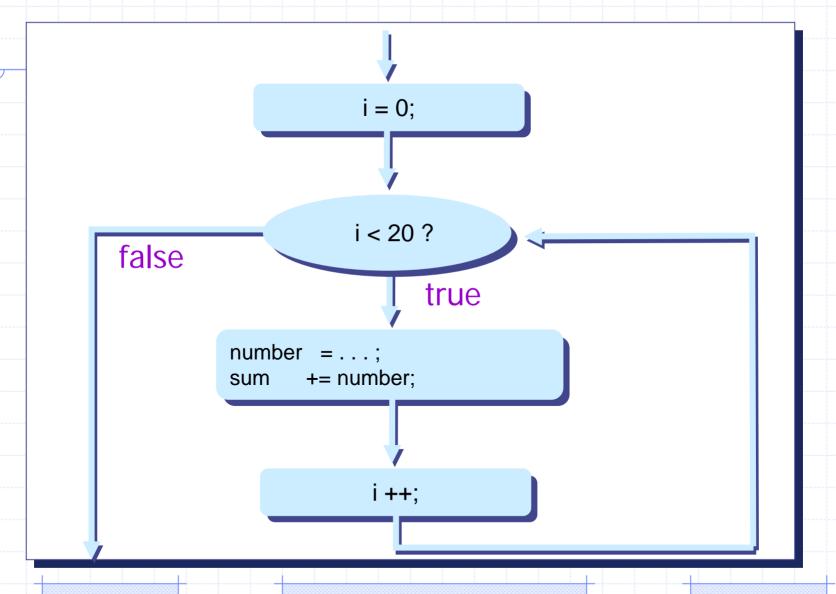
The for Statement

```
int i, sum = 0, number;
for (i = 0; i < 20; i++) {
   number = scanner.nextInt( );
   sum += number;
                                  These statements are
```

These statements are executed for 20 times (i = 0, 1, 2, ..., 19).

Page 12

Dr. S. GANNOUNI & Dr. A. TOUIR


Syntax for the for Statement

```
for ( <initialization>; <boolean expression>; <increment>
                      <loop body>
                            Boolean
                                                      Increment /
Initialization
                           Expression
                                                      Decrement
 for (
     number = scanner.nextInt();
                                                    loop body
     sum += number;
```

Page 13

Dr. S. GANNOUNI & Dr. A. TOUIR

Control Flow of for

Page 14

Dr. S. GANNOUNI & Dr. A. TOUIR

More for Loop Examples

for (int i = 0; i < 100; i += 5)

i = 0, 5, 10, ..., 95

2) for (int j = 2; j < 40; j *= 2)

j = 2, 4, 8, 16, 32

The Nested-for Statement

- Nesting a for statement inside another for statement is commonly used technique in programming.
- Let's generate the following table using nested-for statement.

	5	10	15	20	25
1	1045	2090	3135	4180	5225
2	1140	2280	3420	4560	5700
3	1235	2470	3705	4940	6175
4	1330	2660	3990	5320	6650
5	1425	2850	4275	5700	7125
6	1520	3040	4560	6080	7600
7	1615	3230	4845	6460	8075
8	1710	3420	5130	6840	8550
9	1805	3610	5415	7220	9025
0	1900	3800	5700	7600	9500

```
int price;
 for (int width = 11; width \leq 20, width++)
     for (int length = 5, length \leq 25, length \neq = 5)
NNER
       price = width * length * 19; //$19 per sq. ft.
       System.out.print (" " + price);
     //finished one row; move on to next row
     System.out.println("");
```

OUTER