
Information Hiding

Chapter 5: Classes and Objects
in Depth

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 2

Objectives

•Information hiding principle
•Modifiers and the visibility
•UML representation of a class
•Methods
•Message passing principle
•Passing parameters
•Getters and setters
•Constructors
•Overloading

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 3

Object Oriented Basic Principles

• Abstraction
• Encapsulation
• Information Hiding
• Message Passing
• Overloading

• Inheritance
• Overriding
• Polymorphism
• Dynamic Binding

• Information hiding and Message passing are
discussed in this chapter.

• Overloading is discussed in chapter 6.
• Inheritance, Polymorphism, Overriding and

Dynamic binding are discussed in CSC 113.

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 4

Abstraction Principle
• Data Abstraction

– In order to process
something from the real
world we have to extract
the essential characteristics
of that object.

– Data abstraction is the
process of:

• Refining away the
unimportant details of an
object,

• Keeping only the useful
characteristics that define
the object.

– For example, depending on
how a car is viewed (e.g. in
terms of something to be
registered, or alternatively
something to be repaired,
etc.) different sets of
characteristics will emerge
as being important.

• Functionality Abstraction
– Modeling functionality

suffers from
• unnecessary functionality

may be extracted,
• or alternatively, an

important piece of
functionality may be
omitted.

– Functionality abstraction is
the process of determining
which functionality is
important.

view

view

view

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 5

Encapsulation Principle

• Abstraction involves reducing a real world
entity to its abstraction essential defining
characteristics.

• Encapsulation extends this idea by also
modeling and linking each data of an entity
to the appropriate functionality of that
entity.

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 6

Encapsulation Gives Classes
• OOP makes use of

encapsulation to ensure that
data is used in an appropriate
manner.
– by preventing from

accessing data in a non-
intended manner (e.g. asking
if an Integer is true or false,
etc.).

• Through encapsulation, only a
predetermined appropriate
group of operations may be
applied (have access) to the
data.

• Place data and the operations
that act on that data in the
same class.

• Encapsulation is the OO
principle that allows objects
containing the appropriate
operations that could be applied
on the data they store.

– My Nokia-N71 cell-phone
stores:

• My contacts,
• Missed calls
• … etc.

– My Nokia-N71 may perform the
following operations on the data
it contains:

• Edit/Update/Delete an existing
contact

• Add a new contact
• Display my missed calls.
• …etc.

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 7

Information Hiding Principle

• Limit access to data only to internal
operations that need it.

• OO classes hide the data as private
data members and use public accessor
operations to get at it.

• The scope of the data is limited to the class.

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 8

Information Hiding Objectives

• Information hiding protects from
exposing:

• data items (attributes).
• the difference between stored data and

derived data.
• the internal structure of a class.
• implementation details of a class.

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 9

Encapsulation and
Information Hiding

• Encapsulation (is a language construct that)
facilitates the bundling of data with the
operations acting on that data.

• Place data and the operations that perform on
that data in the same class

• Information hiding is a design principle that
strives to shield client classes from the
internal workings of a class.

• Encapsulation facilitates, but does not
guarantee, information hiding.

• Smearing the two into one concept prevents
a clear understanding of either.

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 10

public and private modifiers

• Let’s consider a class X.
• Let’s consider Y a client class of X.

• Y is a class that uses X.

• Attributes (and methods) of X declared with the
public modifier are accessible from instances of
Y.

• The public modifier does not guarantee the information
hiding.

• Attributes (and methods) of X declared with the
private modifier are not accessible from
instances of Y.

• The private modifier guarantee the information hiding.

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 11

Accessibility from Inside
(the Instance itself)

All members of an instance
are accessible from the

instance itself.

object:X

public - Accessible
- Inaccessible

private

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 12

Accessibility from
an Instance of another Class

Only public members
Are visible from outside.
All else is hidden from

Outside.

:Y(client)

Accessibility from
The Client class.

object:X

public

private

- Accessible
- Inaccessible

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 13

Accessibility from
an Instance of the same Class

If a member is accessible
from an instance, it is also

accessible from other
instances of the same

class.

two:X

Accessibility from
The Client class.

one:X

public - Accessible
- Inaccessible

private

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 14

UML Representation of a Class
(UML Class Diagram)

• UML uses three symbols to represent the visibility
of the class’ members.

• + : mentions that the member is public.
• - : mentions that the member is private.
• # : introduced in the CSC 113.

Methods
(Services)

Attributes

ClassName

- att1: dataType1
-…
- atti: dataTypei

+ m1(…): dataType1
+ ...
+ mj(…): dataTypej

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 15

Declaring Private Attributes

<modifiers> <data type> <attribute name> ;

private String studentName ;

ModifiersModifiers Data TypeData Type NameName

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 16

public class Course {

// Attributes
private String studentName;
private String courseCode ;
// No method Members

}

Example of a Class with
Private attributes

ClassName

- studentName: String
- courseCode: String

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 17

class Course {

// Data Member
private String studentName;
private String courseCode ;

}

public class CourseRegistration {
public static void main(String[] args) {

Course course1, course2;
//Create and assign values to course1

course1 = new Course();
course1.courseCode= “CSC112“;
course1.studentName= “Majed AlKebir“;

//Create and assign values to course2
course2 = new Course();
course2.courseCode= “CSC107“;
course2.studentName= “Fahd AlAmri“;

System.out.println(course1.studentName + " has the course “+
course1.courseCode);

System.out.println(course2.studentName + " has the course “+
course2.courseCode);

}
}

Introduction to OOPDr. S. GANNOUNI & Dr. A. TOUIRPage 18

Accessibility Example

class Service {
public int memberOne;
private int memberTwo;

public void doOne() {

…

}
private void doTwo() {

…

}

}

…

Service obj = new Service();

obj.memberOne = 10;

obj.memberTwo = 20;

obj.doOne();

obj.doTwo();

…

Client Service

	Slide Number 1
	Objectives
	Object Oriented Basic Principles
	Abstraction Principle
	Encapsulation Principle
	Encapsulation Gives Classes
	Information Hiding Principle
	Information Hiding Objectives
	Encapsulation and �Information Hiding
	public and private modifiers
	Slide Number 11
	Slide Number 12
	Slide Number 13
	UML Representation of a Class�(UML Class Diagram)
	Declaring Private Attributes
	Example of a Class with�Private attributes
	Slide Number 17
	Accessibility Example

