The OSI Model and the TCP/IP Protocol Suite

Outline:

- I. Protocol Layers
- 2. OSI Model
- 3. TCP/IP Model
- 4. Addressing

OBJECTIVES

- To discuss the OSI model and its layer architecture and to show the interface between the layers.
- To briefly discuss the functions of each layer in the OSI model.
- To introduce the TCP/IP protocol suite and compare its layers with the ones in the OSI model.
- To show the functionality of each layer in the TCP/IP protocol with some examples.
- To discuss the addressing mechanism used in some layers of the TCP/IP protocol suite for the delivery of a message from the source to the destination.

Computer Network Components

Components of a computer network:

- Computer with NIC (PCs, laptops, handhelds)
- routers & switches (IP router, Ethernet switch)
- Links" Transmission media" (wired, wireless)
- protocols (IP,TCP,CSMA/CD,CSMA/CA)
- applications (network services)
 i.e. Network Operating System (NOS)
- humans and service agents

PROTOCOL LAYERS

- we discussed that a protocol is required when two entities need to communicate.
- When communication is not simple, we may divide the complex task of communication into several layers.
- The sending computer must:
 - Recognize the data.
 - Divide the data into manageable chunks.
 - Add information to each chunk of data to determine the location of the data and to identify the receiver.
 - Add timing and error-checking information.
 - Put the data on the network and send it on its way.
- In this case, we may need several protocols, one for each layer.

PROTOCOL LAYERS

- Let us use a scenario in communication in which the role of protocol layering may be better understood.
- We use two examples. In the first example, communication is so simple that it can occur in only one layer.

Example 1

- Assume Maria and Ann are neighbors with a lot of common ideas. However, Maria speaks only Spanish, and Ann speaks only English.
- Since both have learned the sign language in their childhood, they enjoy meeting in a cafe a couple of days per week and exchange their ideas using signs.
- Occasionally, they also use a bilingual dictionary. Communication is face to face and Happens in one layer as shown in Figure.

Example 2

- Now assume that Ann has to move to another town because of her job. Before she moves, the two meet for the last time in the same cafe.
- Although both are sad, Maria surprises Ann when she opens a packet that contains two small machines.
 - The first machine can scan and transform a letter in English to a secret code or vice versa.
 - The other machine can scan and translate a letter in Spanish to the same secret code or vice versa.
- Ann takes the first machine; Maria keeps the second one.
- The two friends can still communicate using the secret code, as shown in Figure.

THE OSI MODEL

- Established in 1947, the *International* Standards Organization (ISO) is a multinational body dedicated to worldwide agreement on international standards.
- Almost three-fourths of countries in the world are represented in the ISO.
- An ISO standard that covers all aspects of network communications is the Open Systems Interconnection (OSI) model.
- It was first introduced in the late 1970s.

Topics Discussed in the Section

- Layered Architecture
- Layer-to-layer Communication
- Encapsulation
- Layers in the OSI Model

ISO is the organization; OSI is the model.

OSI Model and Nora

Application	7 th floor	Nora gets secret message from Number One	
Presentation	6 th floor	Message is translated, encrypted and miniaturized	
Session	5 th floor	Security checks message, adds checkpoints to ensure the embassy receives whole message	
Transport	4 th floor	Message is analysed, combined if necessary and broken into smaller pieces	
Network	3 rd floor	Personnel check the message, determine the address, indicate fastest route to Embassy	
Data Link	2 nd floor	Message placed in special packet contains message, sender and destination ID	
Physical	I st floor	Prepared for a trip to the KSA Embassy	

The physical layer is responsible for moving individual bits from one (node) to the next.

TCP/IP Protocol Suite

TCP/IP Model

- The TCP/IP protocol suite was developed prior to the OSI model.
- Therefore, the layers in the TCP/IP protocol suite do not match exactly with those in the OSI model.

Comparison between OSI and TCP/IP

In this section we briefly describe the functions of each layer in the OSI model.

LAYERS IN THE OSI MODEL

Physical layer

- defines the procedures and functions that physical devices and interfaces have to perform for transmission occur.
- The physical layer is concerned with the following:
 - Physical characteristics of interfaces and media:
 - Representation of the bits
 - Data rate, the number of bits sent each second.
 - Line configuration, Point to point or multipoint configuration.
 - Physical topology
 - Transmission Mode : Simplex, half duplex or full duplex

Communication at the physical layer

The unit of communication at the physical layer is a bit.

Data Link Layer

- The data link layer transforms the physical layer, a raw transmission facility, to a reliable link and is responsible for node-to-node delivery.
- The Data Link layer is concerned with the following:
 - Framing.
 - Physical addressing, each node has its unique address.
 - Flow Control.
 - Access Control.
 - Error control, normally achieved through a trailer to the end of the frame.

The unit of communication at the data link layer is a frame.

Network Layer

- Is responsible for the source-todestination delivery of a packet possible across multiple networks.
- Functions:
 - Logical addressing.
 - Routing, It determines which path the data should take based on network conditions, priority of service, and other factors.

TCP/IP Protocol Suite

Transport Layer

- The transport layer is responsible for process-to-process delivery of the entire message.
- Makes sure that the data arrives without errors, in the proper sequence and in a reliable condition.
- Functions:
 - Port addressing, The network layer gets each packet to the correct computer; the transport layer gets the entire message to the correct process on that computer.
 - Segmentation and reassembly: a message is divided into transmittable segments, each having a sequence number
 - Connection control: The transport layer can be either connectionless or connectionoriented.
 - Flow control
 - Error control

The unit of communication at the transport layer is a segment, user datagram, or a packet, depending on the specific protocol used in this layer.

Session Layer

- the session layer, allows two applications on different computers to open, use, and close a connection called a session.
 - (A session is a highly structured dialog between two workstations.)
- Functions:
 - Dialog control
 - It also makes sure the session is orderly, establishing which node transmits first, how long it can transmit, and what to do in case of an error.
 - It performs name-recognition and other functions, such as security, that are needed to allow two applications to communicate over the network.

• Synchronization

- The session layer synchronizes user tasks by placing **checkpoints** in the data stream.
- The checkpoints break the data into smaller groups for error detection. It allows information of different streams, perhaps originating from different sources, to be properly combined or synchronized.
 - An example application is <u>web conferencing</u>, in which the streams of audio and video must be synchronous to avoid so-called <u>lip synch</u> problems. It ensures that the person displayed on screen is the current speaker.

presentation layer

- The presentation layer is responsible for translation, compression, and encryption.
- Deals with the actual formatting of the data.
 - For example, data might be converted from EBCDIC to ASCII formatting so that the receiving node can understand it.

Application Layer

- This layer relates to the services that directly provide user interfaces support user applications or services, such as software for file transfers, database access, and e-mail.
- In other words, it serves as a window through which application processes can access network services.
- The application layer enables the user to access the network.
- This would be the layer that a programmer uses to allow his application to access a network service, such as linking into a database.

Communication at application layer

The unit of communication at the application layer is a message.

ADDRESSING

- Four levels of addresses are used in an internet employing the TCP/IP protocols:
 - physical address
 - logical address
 - port address
 - application-specific address.

Each address is related to a one layer in the TCP/IP architecture, as shown in Figure.

Example 1

As we will see later, most local area networks represent the physical address in two ways:

- IPv4
 - use a 32-bit (4-byte) physical address written as decimal digits; every byte (2 hexadecimal digits) is separated by a dot, as shown below

128.7.0.0

A 4-byte (a byte represent 8 bits called octet) physical address

- IPv6 (new version)
 - use a 48-bit (6-byte) physical address written as 12 hexadecimal digits; every byte (2 hexadecimal digits) is separated by a colon, as shown below:

07:01:02:01:2C:4B

A 6-byte (12 hexadecimal digits) physical address

The physical addresses will change from hop to hop, but the logical addresses remain the same.

Example 2

 the purpose of ports is to uniquely identify different applications or processes running on a single computer and thereby enable them to share a single physical connection to a packet-switched network like the Internet. Example 3: port numbers

The physical addresses change from hop to hop, but the logical and port addresses usually remain the same.

Example 3

a port address is a 16-bit address represented by one decimal number as shown.

753

A 16-bit port address represented as one single number

References

- <u>http://pluto.ksi.edu/~cyh/cis370/ebook/ch</u>
 <u>05b.htm</u>
- CSC 1202 2012-2013 Lecture Notes.
- Chapter 2 in TCP/IP Protocol Suite , 4th ed, Behrouz A. Forouzan