Math 244 - Linear Algebra

Chapter 4: Vector Spaces

Dr. Malik Talbi
King Saud University, Mathematic's Department

February 19, 2024
(1) Definition of a real vector space and examples
(2) Subspaces
(3) Linear combinations and linear span of a sets of vectors
(9) Linear dependence and linear independence of a set of vectors
(6) Basis and dimension of a vector space
(0) Coordinates of a vector with respect to a basis
(3) Change of basis
(8) Rank and nullity of a matrix

Definition of a real vector space and examples

A real vector space $(V,+, \cdot)$ is a nonempty set V together with two operations + , called addition, and \cdot, called multiplication by a scalar, satisfying the following axioms:
(1) $\forall \vec{u}, \vec{v} \in V$, we have $\vec{u}+\vec{v} \in V$;
(2) $\forall \vec{u}, \vec{v} \in V$, we have $\vec{u}+\vec{v}=\vec{v}+\vec{u}$;
(3) $\forall \vec{u}, \vec{v}, \vec{w} \in V$, we have $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$;
(9) There exists an element $\overrightarrow{0}$ in V, called a zero vector, such that $\forall \vec{u} \in V$, we have $\vec{u}+\overrightarrow{0}=\overrightarrow{0}+\vec{u}=\vec{u}$;
(0) $\forall \vec{u} \in V$, there exists an element $-\vec{u} \in V$, called a negative of \vec{u}, such that $\vec{u}+(-\vec{u})=(-\vec{u})+\vec{u}=\overrightarrow{0}$;
(0) $\forall k \in \mathbb{R}, \forall \vec{u} \in V$, we have $k \cdot \vec{u} \in V$;
(1) $\forall k \in \mathbb{R}, \forall \vec{u}, \vec{v} \in V$, we have $k \cdot(\vec{u}+\vec{v})=k \cdot \vec{u}+k \cdot \vec{v}$;
(8) $\forall k_{1}, k_{2} \in \mathbb{R}, \forall \vec{u} \in V$, we have $\left(k_{1}+k_{2}\right) \cdot \vec{u}=k_{1} \cdot \vec{u}+k_{2} \cdot \vec{u}$;
(9) $\forall k_{1}, k_{2} \in \mathbb{R}, \forall \vec{u} \in V$, we have $\left(k_{1} k_{2}\right) \cdot \vec{u}=k_{1} \cdot\left(k_{2} \cdot \vec{u}\right)$;
(10) $\forall \vec{u} \in V$, we have $1 \cdot \vec{u}=\vec{u}$.

Definition of a real vector space and examples

- Elements of V are called vectors.
- Examples: The trivial vector space $\{0\}, R^{n}$, the set $\mathbb{R}^{\mathbb{N}}$ of real sequences, the set $\mathbb{R}[X]$ of real polynomials, The set of real functions, The set $M_{m, n}(\mathbb{R})$ of matrices of size $m \times n$.

Theorem

Let $(V,+, \cdot)$ be a real vector space. We have
(1) The zero vector $\overrightarrow{0}$ defined in axiom 4 is unique.
(2) For each \vec{u}, the vector $-\vec{u}$, negative of u, defined in axiom 5 is unique.
(3) $\forall \vec{u} \in V$, we have $0 \cdot \vec{u}=\overrightarrow{0}$.
(9) $\forall k \in \mathbb{R}$, we have $k \cdot \overrightarrow{0}=\overrightarrow{0}$.
(5) $\forall \vec{u} \in V$, we have $(-1) \cdot \vec{u}=-\vec{u}$.
(c) $\forall k \in \mathbb{R}, \forall \vec{u} \in V$, if $k \cdot \vec{u}=\overrightarrow{0}$, then $k=0$ or $\vec{u}=\overrightarrow{0}$.

Subspaces

- Definition, Characterization, Examples
- Intersection of Subspaces, Solution set of $A x=0$.

Linear combinations and linear span of a sets of vectors

- Linear Combination, Subspace Generated/span
- Theorem: Equality of spans of two families

Linear dependence and linear independence of a set of

 vectors- Linearly independent, $\left\{s_{1}, \ldots, s_{r}\right\} \subset \mathbb{R}^{n}$.

Basis and dimension of a vector space

Coordinates of a vector with respect to a basis

Change of basis

Rank and nullity of a matrix

