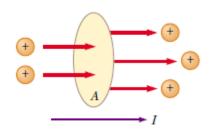
Current and Resistance

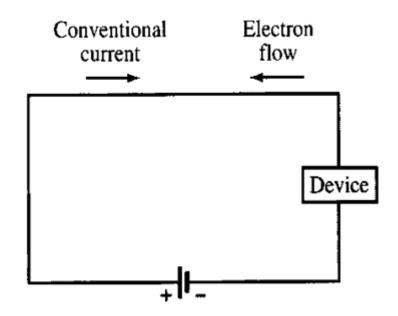

CHAPTER OUTLINE
27.1 Electric Current
27.2 Resistance
27.4 Resistance and Temperature
27.6 Electrical Power

27.1 Electric Current

The current is the rate at which charge flows through this surface

If ΔQ is the amount of charge that passes through this area in a time interval Δt , the average current I_{av} is equal to the charge that passes through A per unit time:

$$I_{av} = \frac{\Delta Q}{\Delta t}$$

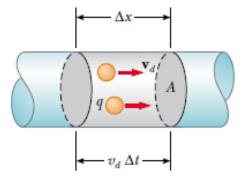

If the rate at which charge flows varies in time, then the current varies in time; we define the **instantaneous current** *I* as the differential limit of average current:

$$I = \frac{dQ}{dt}$$

The SI unit of current is the ampere (A):

$$1 \text{ A} = \frac{1 \text{ C}}{1 \text{ s}}$$

The direction of the current is opposite the direction of flow of electrons



Microscopic Model of Current

Consider the current in a conductor of cross-sectional area A. The volume of a section of the conductor of length Δx is A Δx . If n represents the number of mobile charge carriers per unit volume (in other words, the charge carrier density), the number of carriers in the gray section is nA Δx . Therefore, the total charge ΔQ in this section is:

$$\Delta Q = (nAv_d \,\Delta t) q$$

$$I_{av} = \frac{\Delta Q}{\Delta t} = nqv_d A$$

27.2 Resistance

The current density J in the conductor is defined as the current per unit area

$$I = nqv_d A$$
$$= \frac{I}{A} = nqv_d$$

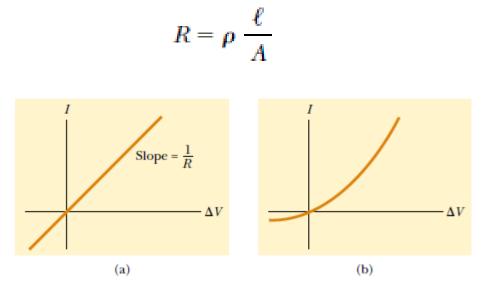
A current density J and an electric field E are established in a conductor whenever a potential difference is maintained across the conductor

$$\mathbf{J} = \boldsymbol{\sigma} \mathbf{E}$$

$$\Delta V = E\ell$$
$$J = \sigma E = \sigma \frac{\Delta V}{\ell}$$
$$\Delta V = \frac{\ell}{\sigma} J = \left(\frac{\ell}{\sigma A}\right)I = RI$$

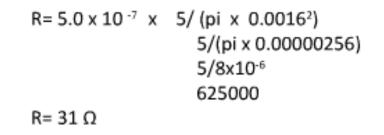
The quantity $R = \ell / \sigma A$ is called the **resistance** of the conductor.

$$R \equiv \frac{\Delta V}{I}$$


SI units of the resistance:

$$1 \Omega \equiv \frac{1 V}{1 A}$$

The inverse of conductivity is **resistivity**³ ρ :


$$\rho = \frac{1}{\sigma}$$

where ρ has the units ohm-meters ($\Omega \cdot m$). Because $R = \ell / \sigma A$, we can express the resistance of a uniform block of material along the length ℓ as

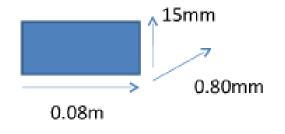
Figure 27.7 (a) The current–potential difference curve for an ohmic material. The curve is linear, and the slope is equal to the inverse of the resistance of the conductor. (b) A nonlinear current–potential difference curve for a junction diode. This device does not obey Ohm's law.

1) Calculate the resistance of a uniform wire of diameter 0.32 mm and length 5.0m. The resistivity of the wire $= 5.0 \times 10^{-7} \Omega m$

2) Calculate the resistance of a rectangle strip of copper length 0.08m, thickness 15 mm and width 0.80mm The resistivity of copper= $1.7 \times 10^{-8} \Omega m$

```
Area = 0.015 x 0.0080

A = 0.00012


L = 0.08m

R = 1.7 x 10 ^{-8} x 0.08 / 0.00012

R = 0.0000113

R = 11 \mu\Omega
```

Sec. 3. 6

3) A wire of uniform diameter 0.28 mm and length 1.50m has a resistance of 45 Ω

Calculate

a)Its resistivity
 b) The length of wire that has the resistance of 1.0Ω

 $\rho = R \frac{A}{\ell}$

r = 0.14 mm r= 0.00014m L = 1.50m R = 45 Ω A = 6.15 x 10 ⁻⁸

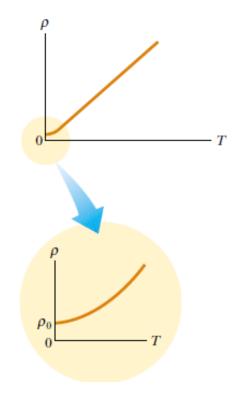
ρ = 45 * (6.15 × 10 - 8 / 1.5) = 0.0000018 = 1.8×10 - 6 Ωm

 $A = pi r^2$

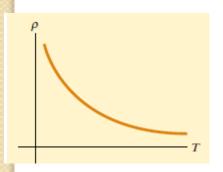
27.4 Resistance and Temperature

Over a limited temperature range, the resistivity of a conductor varies approximately linearly with temperature according to the expression

$$\rho = \rho_0 [1 + \alpha (T - T_0)]$$


where ρ is the resistivity at some temperature *T* (in degrees Celsius), ρ_0 is the resistivity at some reference temperature T_0 (usually taken to be 20°C), and α is the **temperature coefficient of resistivity.** From Equation 27.19, we see that the temperature coefficient of resistivity can be expressed as

$$\alpha = \frac{1}{\rho_0} \frac{\Delta \rho}{\Delta T}$$


Note that the unit for α is degrees Celsius⁻¹

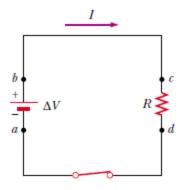
we can write the variation of resistance as

 $R = R_0 [1 + \alpha (T - T_0)]$

Resistivity versus temperature for a metal such as copper. The curve is linear over a wide range of temperatures, and p increases with increasing temperature. As *T approaches* absolute zero (inset), the resistivity approaches a finite value p0.

Resistivity versus temperature for a pure semiconductor, such as silicon or germanium.

Example 27.6 A Platinum Resistance Thermometer


A resistance thermometer, which measures temperature by measuring the change in resistance of a conductor, is made from platinum and has a resistance of 50.0 Ω at 20.0°C. When immersed in a vessel containing melting indium, its resistance increases to 76.8 Ω . Calculate the melting point of the indium.

$$\Delta T = \frac{R - R_0}{\alpha R_0} = \frac{76.8 \ \Omega - 50.0 \ \Omega}{[3.92 \times 10^{-3} (^{\circ}\text{C})^{-1}] (50.0 \ \Omega)}$$
$$= 137^{\circ}\text{C}$$

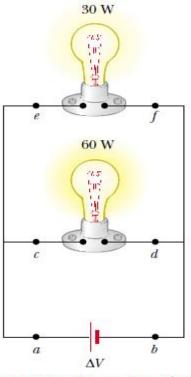
Because $T_0 = 20.0^{\circ}$ C, we find that *T*, the temperature of the melting indium sample, is 157°C.

27.6 Electrical Power

$$\frac{dU}{dt} = \frac{d}{dt} \left(Q \Delta V \right) = \frac{dQ}{dt} \Delta V = I \Delta V$$

$$\mathcal{P} = I \Delta V$$

$$\mathcal{P} = I^2 R = \frac{(\Delta V)^2}{R}$$


When I is expressed in amperes, ΔV in volts, and R in ohms, the SI unit of power is the watt

Quick Quiz 27.7 The same potential difference is applied to the two lightbulbs shown in Figure 27.14. Which one of the following statements is true? (a) The 30-W bulb carries the greater current and has the higher resistance. (b) The 30-W bulb carries the greater current, but the 60-W bulb has the higher resistance. (c) The 30-W bulb has the higher resistance, but the 60-W bulb carries the greater current. (d) The 60-W bulb carries the greater current and has the higher resistance.

Figure 27.14 (Quick Quiz 27.7) These lightbulbs operate at their rated power only when they are connected to a 120-V source.

Quick Quiz 27.8 For the two lightbulbs shown in Figure 27.15, rank the current values at points *a* through *f*, from greatest to least.

Figure 27.15 (Quick Quiz 27.8) Two lightbulbs connected across the same potential difference.

Example 27.7 Power in an Electric Heater

An electric heater is constructed by applying a potential difference of 120 V to a Nichrome wire that has a total resistance of 8.00 Ω . Find the current carried by the wire and the power rating of the heater.

Because $\Delta V = IR$, we have

$$I = \frac{\Delta V}{R} = \frac{120 \text{ V}}{8.00 \Omega} = 15.0 \text{ A}$$

We can find the power rating using the expression $\mathcal{P} = I^2 R$:

 $\mathcal{P} = I^2 R = (15.0 \text{ A})^2 (8.00 \Omega) = 1.80 \times 10^3 \text{ W}$

 $\mathcal{P} = 1.80 \text{ kW}$