Holomorphic Functions

BLEL Mongi

Department of Mathematics King Saud University

February 14, 2023

イロト イヨト イヨト イヨト

臣

Definition

Let $f: \Omega \longrightarrow \mathbb{C}$ be a function defined on a non empty open set Ω .

1. We say that f is differentiable at $z\in\Omega$ if there exists $\ell\in\mathbb{C}$ such that

$$\lim_{z\to a}\frac{f(w)-f(z)}{w-z}=\lim_{h\to 0,h\in\mathbb{C}^*}\frac{f(z+h)-f(z)}{h}=\ell.$$

We denote $\ell = f'(z)$ and called the derivative of f at z.

We say that f is holomorphic on Ω if f is differentiable at any point of Ω.
 We denote H(Ω) the set of holomorphic functions on Ω.

Holomorphic Functions Holomorphic Functions

Examples

 The function f(z) = zⁿ is holomorphic on C, for every n ∈ N.
 The function f(z) = z̄ is not differentiable at any point of C because ^{z+h-z̄}/_h = ^{h̄}/_h and lim ^{h̄}/_h does not exit.
 If f: Ω → C is a holomorphic function, then the function f* defined by f*(z) = f(z̄) is holomorphic on Ω̄ = {z̄; z ∈ Ω}, indeed If z, a ∈ Ω̄,

$$\lim_{z\to a}\frac{f^*(z)-f^*(a)}{z-a}=\lim_{z\to a}\overline{\left(\frac{f(\bar{z})-f(\bar{a})}{\bar{z}-\bar{a}}\right)}=\overline{f'(\bar{a})}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Holomorphic Functions Holomorphic Functions

Proposition (Exercise)

- If f and g are holomorphic on Ω, then f + g, fg are also holomorphic on Ω. The function ^f/_g is holomorphic on the open set where g does not vanishes.
- 2. If $f: \Omega_1 \longrightarrow \mathbb{C}$ is a holomorphic function and $g: \Omega_2 \longrightarrow \mathbb{C}$ is a holomorphic function such that $g(\Omega_2) \subset \Omega_1$, then $f \circ g$ is holomorphic on Ω_2 and $(f \circ g)'(z) = f'(g(z))g'(z)$.

Holomorphic Functions Holomorphic Functions

Theorem (Cauchy-Riemann conditions)

Let f(z) = U(x, y) + iV(x, y) be a function defined on a neighborhood of $z_0 = x_0 + iy_0$. ($U = \operatorname{Re} f$ and $V = \operatorname{Im} f$). We assume that the functions U and V are differentiable at (x_0, y_0) . Then the function f of complex variable z = x + iy is differentiable at z_0 , if and only if

$$\begin{pmatrix} \frac{\partial U}{\partial x}(x_0, y_0) = \frac{\partial V}{\partial y}(x_0, y_0) \\ \frac{\partial U}{\partial y}(x_0, y_0) = -\frac{\partial V}{\partial x}(x_0, y_0) \end{cases}$$
(1)

伺 ト イ ヨ ト イ ヨ ト

These conditions are called the Cauchy-Riemann conditions. They are equivalent to the following condition

$$\frac{\partial f}{\partial y}(z_0) = i \frac{\partial f}{\partial x}(z_0).$$
(2)

イロン 不同 とうほう 不同 とう

크

Holomorphic Functions Holomorphic Functions

Proof

Necessary condition

If f is differentiable at $z_0 = x_0 + iy_0$, then $\lim_{h\to 0} \frac{f(z_0+h)-f(z_0)}{h} = f'(z_0)$. If we take the limit when h tends to 0, h real, we have

$$f'(z_0) = \lim_{h \to 0} \frac{U(x_0 + h, y_0) - U(x_0, y_0)}{h} + i \frac{V(x_0 + h, y_0) - V(x_0, y_0)}{h} \\ = \frac{\partial U}{\partial x}(x_0, y_0) + i \frac{\partial V}{\partial x}(x_0, y_0) = \frac{\partial f}{\partial x}(x_0 + iy_0).$$
(3)

Holomorphic Functions Holomorphic Functions

If we take the limit when h = it, with t real, we have

$$f'(z_0) = \lim_{t \to 0} \frac{U(x_0, y_0 + t) - U(x_0, y_0)}{h} + i \frac{V(x_0, y_0 + t) - V(x_0, y_0)}{it}$$
$$= -i \frac{\partial U}{\partial y}(x_0, y_0) + \frac{\partial V}{\partial y}(x_0, y_0) = -i \frac{\partial f}{\partial y}(z_0).$$
(4)

We have then the Cauchy-Riemann conditions.

Sufficient condition

By definition of the differentiability of function of two real variables, we have

$$\begin{cases} U(x_0 + s, y_0 + t) - U(x_0, y_0) = s \frac{\partial U}{\partial x}(x_0, y_0) + t \frac{\partial U}{\partial y}(x_0, y_0) + |h|\varepsilon_1(h) \\ V(x_0 + s, y_0 + t) - V(x_0, y_0) = s \frac{\partial V}{\partial x}(x_0, y_0) + t \frac{\partial V}{\partial y}(x_0, y_0) + |h|\varepsilon_2(h) \end{cases}$$

Holomorphic Functions Holomorphic Functions

with
$$h = s + it$$
, $\lim_{h\to 0} \varepsilon_1(h) = \lim_{h\to 0} \varepsilon_2(h) = 0$. Thus

$$f(z_0+h)-f(z_0) = s\frac{\partial U}{\partial x}(x_0, y_0) + t\frac{\partial U}{\partial y}(x_0, y_0) + i\left(s\frac{\partial V}{\partial x}(x_0, y_0) + t\frac{\partial V}{\partial y}(x_0, y_0)\right)$$

with $\varepsilon = \varepsilon_1 + i\varepsilon_2$.

・ロト ・回ト ・ヨト ・ヨト 三日

It follows by Cauchy-Riemann conditions that

$$f(z_0 + h) - f(z_0) = Ah + |h|\eta(h),$$

with $A = \frac{\partial U}{\partial x}(x_0, y_0) + i\frac{\partial V}{\partial x}(x_0, y_0)$ and $\eta(h)$ tends to 0 when h
tends to 0. Thus f is differentiable at z_0 and $f'(z_0) = A$.

・ロト ・御 ト ・ ヨ ト ・ ヨ ト

Ð,

Remark (Riemann 1851)

If U and V are two functions twice continuously differentiable on an open subset Ω of \mathbb{C} and if f = U + iV is holomorphic on Ω , then $\Delta U = \Delta V = 0$, with $\Delta U = \frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2}$. (Δ is called the Laplace operator). We say that U and V are harmonic.

Holomorphic Functions Holomorphic Functions

Corollary

If f is holomorphic on Ω , then

$$\begin{aligned} f'(z) &= \frac{\partial f}{\partial x}(x,y) = -i\frac{\partial f}{\partial y}(x,y) \\ &= \frac{\partial U}{\partial x}(x,y) + i\frac{\partial V}{\partial x}(x,y) = \frac{\partial V}{\partial y}(x,y) - i\frac{\partial U}{\partial y}(x,y) \\ &= \frac{\partial U}{\partial x}(x,y) - i\frac{\partial U}{\partial y}(x,y) = \frac{\partial V}{\partial y}(x,y) + i\frac{\partial V}{\partial x}(x,y), \end{aligned}$$

where z = x + iy.

イロト イヨト イヨト イヨト

크

Example

Determine the holomorphic functions $f : \mathbb{C} \longrightarrow \mathbb{C}$ such that $\operatorname{Re}f(z) = U(x, y) = x^2 - y^2 - 2xy$. Let $V = \operatorname{Im}f$, then by Cauchy-Riemann conditions, $\frac{\partial V}{\partial y} = 2x - 2y$, thus $V = 2xy - y^2 + g(x)$. Furthermore $\frac{\partial V}{\partial x} = 2y + g'(x) = -(-2y - 2x) = 2x + 2y$, thus $V = x^2 - y^2 + 2xy + C$ and $f(z) = (1 + i)z^2 + iC$.

Holomorphic Functions Holomorphic Functions

Example

Determine the holomorphic functions $f: \mathbb{C} \longrightarrow \mathbb{C}$ such that $\operatorname{Re} f(z) = x^3 - 3xy^2 - 2xy - 1.$ If V = Imf, then $\frac{\partial V}{\partial v} = 3x^2 - 3y^2 - 2y$, thus $V = 3x^2v - v^3 - v^2 + g(x)$. Furthermore $\frac{\partial V}{\partial x} = 6xy + g'(x) = 6xy + 2x$, thus $V = 3x^2y - y^3 - y^2 + x^2 + C$. $\begin{aligned} \partial x \\ f'(z) &= \frac{\partial f}{\partial x} = 3x^2 - 3y^2 - 2y + i(6xy + 2x) = \\ 3(x^2 - y^2 + 2ixy) + 2i(x + iy) = 3z^2 + 2iz. \end{aligned}$ $f(z) = z^3 + iz^2 + 1 + ic$, where $c \in \mathbb{R}$.

Proposition

Let f be a holomorphic function on a domain Ω . Then $f' \equiv 0$ on $\Omega \iff f$ is constant on Ω .

Proof

The sufficient condition is trivial. For the necessary condition, it suffices to show that f is locally constant. Let $z_0 \in \Omega$ and r > 0 such that $D(z_0, r) \subset \Omega$. Let $z_1 \in D(z_0, r)$, the complex number $z_2 = \operatorname{Re} z_1 + \operatorname{iIm} z_0 \in D(z_0, r)$ and $f(z_0) = f(z_2)$ because $\frac{\partial f}{\partial x} = 0$ and $f(z_2) = f(z_1)$ because $\frac{\partial f}{\partial y} = 0$, thus $f(z_0) = f(z_1)$.

Holomorphic Functions Holomorphic Functions

Proposition

Let $f: \Omega \longrightarrow \mathbb{C}$ be a holomorphic function on a domain Ω of \mathbb{C} . Then the following properties are equivalent.

- 1. f is constant on Ω .
- 2. Ref is constant on Ω .
- 3. Im f is constant on Ω .
- 4. |f| is constant on Ω .
- 5. \overline{f} is holomorphic on Ω .

Proof

- It is obvious that $1) \Rightarrow 2).$
- By The Cauchy-Riemann conditions (1), 2) \iff 3).
- Since 2) \iff 3), then 3) \Rightarrow 4).
- If |f| = 0, then \overline{f} is holomorphic on Ω .
- If $|f| = c \neq 0$, then $f\overline{f} = c$ and $\overline{f} = \frac{c^2}{f}$ is holomorphic on Ω .

• \overline{f} is holomorphic on Ω . In use the Cauchy-Riemann conditions for f and \overline{f} , we find f is constant.

Holomorphic Functions Holomorphic Functions Holomorphic Functions Holomorphic Functions

Theorem

Let f be the holomorphic function defined by the power series $\sum_{n\geq 0} a_n z^n$ which admits R > 0 as radius of convergence, then the

function g defined by the power series $\sum_{n\geq 1} na_n z^{n-1}$ admits R as radius of convergence. The function f is holomorphic on D(0, R) and f'(z) = g(z).

Holomorphic Functions Holomorphic Functions Holomorphic Functions Holomorphic Functions

For the proof of this theorem, we need the following lemma Lemma

Let $z\in \mathbb{C}$ and $h\in \mathbb{C}$ such that $0<|h|\leq r,$ then for all $n\in \mathbb{N}^*$

$$|(z+h)^n - z^n - nhz^{n-1}| \le \frac{|h|^2}{r^2}(|z|+r)^n$$
 (5)

and

$$n|z|^{n-1} \le \frac{1}{r} (2(|z|+r)^n + |z|^n)$$
(6)

Holomorphic Functions Holomorphic Functions Holomorphic Functions Holomorphic Functions

Proof By inequality (5)

$$\begin{aligned} \left| (z+h)^{n} - z^{n} - nhz^{n-1} \right| &= \left| \sum_{k=0}^{n} C_{n}^{k} h^{k} z^{n-k} - z^{n} - nhz^{n-1} \right| \\ &= \left| \sum_{k=2}^{n} C_{n}^{k} h^{k} z^{n-k} \right| \\ &\leq \left| h \right|^{2} \sum_{k=2}^{n} C_{n}^{k} |z|^{n-k} |h|^{k-2} \\ &\leq \frac{|h|^{2}}{r^{2}} \sum_{k=2}^{n} C_{n}^{k} |z|^{n-k} r^{k} \leq \frac{|h|^{2}}{r^{2}} (|z|+r)^{n}. \end{aligned}$$

We have $|(z+h)^n - z^n - nhz^{n-1}| \ge nr|z|^{n-1} - |z|^n - (|z|+r)^n$. By (5), we deduce

Holomorphic Functions Holomorphic Functions Holomorphic Functions Holomorphic Functions

$$nr|z|^{n-1} \le |z|^n + (|z|+r)^n + |(z+r)^n - z^n - nrz^{n-1}| \le |z|^n + 2(|z|+r)^n.$$

Proof of theorem 2.1

We denote R' the radius of convergence of the power series $\sum_{n\geq 1} na_n z^{n-1}$. It is obvious that $R' \leq R$. Let r > 0 such that |z| + r < R. By lemma 2.2, we have $|na_n z^{n-1}| \leq \frac{1}{r} (2|a_n|(|z|+r)^n + |a_n||z|^n)$ and thus $\sum_{n\geq 1} na_n z^{n-1}$ converges absolutely on D(0, R). Thus the radius of convergence of the series defining g is greater than R. Thus R = R'.

Holomorphic Functions Holomorphic Functions Holomorphic Functions Holomorphic Functions

By inequality (5),

$$|rac{f(z+h)-f(z)}{h}-g(z)|\leq rac{|h|}{r}\sum_{n=1}^{+\infty}|a_n|(|z|+r)^n,$$

this proves that when h tends to 0, f'(z) = g(z), for all $z \in D(0, R)$.

イロト イヨト イヨト イヨト

臣

Holomorphic Functions Holomorphic Functions Holomorphic Functions Holomorphic Functions

Corollary

If
$$f(z) = \sum_{n=0}^{+\infty} a_n z^n$$
, then f is infinitely continuously differentiable
on $D(0, R)$, $a_n = \frac{f^{(n)}(0)}{n!}$ and $f(z) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} z^n$. (This series is
called the Taylor's series of f at 0.)

Ð,

The exponential function e^z is defined by the series $\sum_{n>0} \frac{z^n}{n!}$,

$$(e^{z} = \sum_{n=0}^{+\infty} \frac{z^{n}}{n!})$$
 and it fulfills the following properties
• $(e^{z})' = e^{z}$,

•
$$e^{z+w} = e^z e^w$$
 this results by definition of the product series,

$$\bullet \quad \mathrm{e}^{z}\mathrm{e}^{-z}=1 \text{ for all } z\in\mathbb{C}\text{,}$$

•
$$e^x > 0$$
 for all $x \in \mathbb{R}$,

•
$$0 < e^x < 1$$
 for all $x \in \mathbb{R}^*_-$,

•
$$e^{\overline{z}} = \overline{e^{z}}$$
,

•
$$|e^{iy}| = 1$$
 for all $y \in \mathbb{R}$, thus $|e^{x+iy}| = e^x$ for all $(x, y) \in \mathbb{R}^2$.

•
$$e^z \neq 0, \ \forall z \in \mathbb{C}.$$

These properties prove that the exponential function $z \mapsto e^{z}(\mathbb{C}, +) \longrightarrow (\mathbb{C}^{*}, \times)$ is an homomorphism of groups.

臣

We define • $\cos z = \frac{e^{iz} + e^{-iz}}{2}$ the cosine function, • $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$ the sine function, • $\cosh z = \frac{e^z + e^{-z}}{2}$ the hyperbolic cosine function, • $\sinh z = \frac{e^z + e^{-z}}{2}$ the hyperbolic sine function. Thus $e^{iz} = \cos z + i \sin z$, $e^{x+iy} = e^x(\cos y + i \sin y)$, y is an argument of e^z (this yields the Euler formula $e^{i\theta} = \cos \theta + i \sin \theta$).

Holomorphic Functions Holomorphic Functions Holomorphic Functions Holomorphic Functions

Properties

$$\cos z + i \sin z = e^{iz}$$
, $\cos z - i \sin z = e^{-iz}$, then $\cos^2 z + \sin^2 z = 1$.
 $\cosh z + \sinh z = e^z$, $\cosh z - \sinh z = e^{-z}$, then
 $\cosh^2 z - \sinh^2 z = 1$.
 $\cosh(iz) = \cos z$ and $\sinh(iz) = i \sin z$.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Ð,

Holomorphic Functions Holomorphic Functions Holomorphic Functions Holomorphic Functions

Proposition

The function e^{iz} is periodic. We denote 2π the period of e^{iz} . **Proof** $e^{z} = e^{z+w} \iff e^{w} = 1$, thus w = iy, with $y \in \mathbb{R}$. Since $\cos^{2} y + \sin^{2} y = 1$, then $(\sin y)' = \cos y < 1$.

Holomorphic Functions Holomorphic Functions Holomorphic Functions Holomorphic Functions

Since $\sin 0 = 0$, then $\sin y \le y$ for $y \ge 0$. In the same time, $(\cos y)' = -\sin y \ge -y$ and $\cos 0 = 1$, then $\cos y \ge 1 - \frac{y^2}{2}$. It follows that sin $y \ge y - \frac{y^3}{3!}$ and $\cos y \le 1 - \frac{y^2}{2} + \frac{y^4}{4!}$. These inequalities leads that $\cos\sqrt{3} < 0$, thus there exists $0 < v_0 < \sqrt{3}$ such that $\cos y_0 = 0$ and $\sin y_0 = \pm 1$. $e^{iy_0} = \pm i$ and $e^{4iy_0} = 1$. Thus $4y_0$ is a period of the function e^{iz} and it is the smallest period. Indeed, let $y_0 > y > 0$, sin $y \ge y(1 - \frac{y^2}{6}) \ge \frac{y}{2} > 0$. This shows that the function $\cos y$ is strictly decreasing and $\sin y$ is strictly increasing on the interval $[0, y_0]$, thus sin $y < \sin y_0 = 1$, $0 < \sin y < 1$, this yields that $e^{iy} \neq \pm 1$, $e^{iy} \neq \pm i$ and $e^{4iy} \neq 1$. It follows that $4y_0$ is the smallest period denoted w_0 . Let w be a period such that $nw_0 < w < (n+1)w_0$. If $w \neq nw_0$, then $w - nw_0$ is a period and $0 < w - nw_0 < w_0$, this is impossible, thus $w = nw_0$. We denote $w_0 = 2\pi$, thus $e^{i\frac{\pi}{2}} = i$, $e^{i\pi} = -1$ and $e^{2i\pi} = 1$ イロト イヨト イヨト イヨト

Lemma

For all $z = x + iy \in \mathbb{C} \setminus \{0\}$, there exists r > 0 and a unique $\theta \in [0, 2\pi[$ such that $z = r(\cos \theta + i \sin \theta) = re^{i\theta}$.

Proof

One has $\cos^2 \theta + \sin^2 \theta = 1$, thus $r = \sqrt{x^2 + y^2}$. We assume that r = 1.

• If $0 \le x < 1$ and $y \ge 0$, we know that the function $f(\theta) = \cos \theta$ is decreasing and continuous of the interval $[0, \frac{\pi}{2}]$ with values on the interval [0, 1] and as $x \in [0, 1[$, there exists a unique $\theta \in]0, \frac{\pi}{2}]$ such that $x = \cos \theta$, furthermore $x^2 + y^2 = 1$ and $y \ge 0$, thus $y = \sqrt{1 - x^2} = \sin \theta$, where $x + iy = \cos \theta + i \sin \theta$.

• If $x \ge 0$ and $y \le 0$, $x \ne 1$. From which above, there exists a unique $\theta \in]0, \frac{\pi}{2}]$ such that $x - iy = \cos \theta + i \sin \theta$, where $\cos \theta - i \sin \theta = x + iy = \cos(2\pi - \theta) + i \sin(2\pi - \theta)$ and $2\pi - \theta \in [\frac{3\pi}{2}, 2\pi]$. • If $x \le 0$, $x \ne -1$ and $y \ge 0$. From which above, there exists a unique $\theta \in]\frac{3\pi}{2}, 2\pi]$ such that $-x - iy = \cos \theta + i \sin \theta$, this yields that $x + iy = \cos(-\pi + \theta) + i \sin(-\pi + \theta)$, where $\theta - \pi \in [\frac{\pi}{2}, \pi]$.

イロン イヨン イヨン イヨン

• If
$$x \le 0$$
, $x \ne 1$ and $y \le 0$. From above, there exists a unique $\theta \in]0, \frac{\pi}{2}]$ such that $-x - iy = \cos \theta + i \sin \theta$, this yields that $x + iy = \cos(\pi + \theta) + i \sin(\pi + \theta)$, where $\theta + \pi \in]\pi, \frac{3\pi}{2}]$.
• If $x = 1$ and $y = 0$, then $x + iy = \cos \theta + i \sin \theta$.
• If $x = -1$ and $y = 0$, then $x + iy = \cos \pi + i \sin \pi$.
The uniqueness of θ in $[0, 2\pi[$ results from the fact that 2π is the smallest period of the function e^{iz} .

◆□ > ◆□ > ◆ □ > ◆ □ > ●

æ

We will prove that the branches of the logarithm defined as above are holomorphic.

Remark

From which above, for all $\alpha \in \mathbb{R}$ and all $z \in \mathbb{C} \setminus \{0\}$, there exists a unique r > 0 and a unique $\theta \in [\alpha, \alpha + 2\pi[$ such that $z = r(\cos \theta + i \sin \theta)$.

Holomorphic Functions Holomorphic Functions Holomorphic Functions Holomorphic Functions

Proposition

The mapping $A: \mathbb{C} \setminus \mathbb{R}^+ \longrightarrow]0, 2\pi[$ defined by $A(z) = A(r(\cos \theta + i \sin \theta)) = \theta$ is continuous. Proof $z = r(\cos \theta + i \sin \theta) = x + iy$, where $\theta \in]0, 2\pi[$. $x = r\cos\theta = -r\cos(\pi - \theta) = -2r\cos^2(\frac{\pi - \theta}{2}) + r.$ $y = r \sin \theta = r \sin(\pi - \theta) = 2r \cos(\frac{\pi - \theta}{2}) \sin(\frac{\pi - \theta}{2}).$ $r-x=2r\cos^2(\frac{\pi-\theta}{2}).$ $y = 2r\cos(\frac{\pi-\theta}{2})\sin(\frac{\pi-\theta}{2})$ $\frac{y}{-x+\sqrt{x^2+y^2}} = \operatorname{tg}(\frac{\pi-\theta}{2}) \Rightarrow \frac{\pi-\theta}{2} = \operatorname{tan}^{-1}(\frac{y}{\sqrt{x^2+y^2}-x}).$ Image: A matrix and a matrix

Holomorphic Functions Holomorphic Functions Holomorphic Functions Holomorphic Functions

Thus

$$heta=\pi-2 an^{-1}(rac{y}{\sqrt{x^2+y^2}-x}),$$

and A is continuous.

In the same way, the mapping $\mathbb{C} \setminus \{te^{i\alpha}, t \ge 0\} \longrightarrow]\alpha, \alpha + 2\pi[$ defined by $A_{\alpha}(z) = A(r(\cos \theta + i \sin \theta)) = \theta$ is continuous.

To prove the holomorphy of the Logarithmic function, we need the following theorem

Holomorphic Functions Holomorphic Functions Holomorphic Functions Holomorphic Functions

Theorem

Let Ω be an open subset of \mathbb{C} and let $f: \Omega \longrightarrow \mathbb{C}$ be a holomorphic function. We assume that $f'(z) \neq 0 \ \forall z \in \Omega$, f is bijective of Ω on $f(\Omega) = \Omega'$, where Ω' is an open subset of \mathbb{C} . If f^{-1} , the inverse function of f is continuous on Ω' , then f^{-1} is holomorphic on Ω' and

$$(f^{-1})'(w)=rac{1}{f'(f^{-1}(w))},\quad orall\ w\in\Omega'.$$

Holomorphic Functions Holomorphic Functions Holomorphic Functions Holomorphic Functions

Proof

Let $w_0 \in \Omega'$ and $z_0 = f^{-1}(w_0) \in \Omega$. For $w \in \Omega'$, there exists a unique $z \in \Omega$, such that w = f(z). Since f^{-1} is continuous, if w tends to w_0 , then z tends to z_0 . Thus

$$\frac{f^{-1}(w) - f^{-1}(w_0)}{w - w_0} = \frac{z - z_0}{f(z) - f(z_0)} \xrightarrow[w \to w_0]{} \frac{1}{f'(z_0)} = \frac{1}{f'(f^{-1}(w_0))}.$$

Image: A match the second s

We will prove that the assumptions, f^{-1} is continuous, $f'(z) \neq 0$, $\forall z \in \Omega$ and Ω' is an open subset of \mathbb{C} are hold for any holomorphic function $f: \Omega \longrightarrow \Omega'$ bijective unlike in the real case.

Corollary

The mapping $z \mapsto e^z$ is a holomorphic function, bijective of the strip $A_t = \{x + iy \in \mathbb{C}; t - \pi < y < \pi + t, x \in \mathbb{R}\}$ on $\mathbb{C} \setminus J_t$, with $J_t = \{re^{it}, r \leq 0\}$, $t \in \mathbb{R}$. It has an inverse function defined on $\mathbb{C} \setminus J_t$ with values on A_t . We denote by \log_t this function.

This corollary results by theorem 2.9 and the continuity of the mapping A(z).

Definition

The principal determination (branch) of the logarithm is the inverse function of the exponential function defined on $\mathbb{C} \setminus J_0$ with values on A_0 . We denote this function by Log.

Holomorphic Functions Holomorphic Functions Holomorphic Functions Holomorphic Functions

Exercise

Show that 1. $\operatorname{Log} z = \ln \sqrt{x^2 + y^2} + 2i \tan^{-1} \frac{y}{x + \sqrt{x^2 + y^2}}, \quad \forall z = x + iy \in \mathbb{C} \setminus J_0.$ 2. $(\log_t z)' = \frac{1}{z}$ for all $t \in \mathbb{R}$ and $z \in \mathbb{C} \setminus J_t.$

Holomorphic Functions Holomorphic Functions Holomorphic Functions Holomorphic Functions

Corollary

The function $f(z) = \log_t(z) - \log_{t'}(z)$ is constant on each connected component of $(\mathbb{C} \setminus J_t) \cap (\mathbb{C} \setminus J_{t'})$.

Remark

The relation $\text{Log}(z_1.z_2) = \text{Log}z_1 + \text{Log}z_2$ is not always valid. It suffices to take $z_1 = e^{\frac{3i\pi}{4}} = z_2$, $z_1z_2 = e^{\frac{3i\pi}{2}} = e^{\frac{-i\pi}{2}}$, $\text{Log}z_1z_2 = -i\frac{\pi}{2}$ and $\text{Log}z_1 + \text{Log}z_2 = \frac{3i\pi}{2} \neq -\frac{i\pi}{2}$.

Holomorphic Functions Holomorphic Functions Holomorphic Functions Holomorphic Functions

Proposition

For
$$|z| < 1$$
, $Log(1 - z) = -\sum_{n=1}^{+\infty} \frac{z^n}{n}$, where $Log(1 - z)$ is the principal determination (branch) of the logarithmic function.
Proof

Let
$$f(z) = \sum_{n=1}^{+\infty} \frac{z^n}{n}$$
, for $|z| < 1$, then $f'(z) = \sum_{n=0}^{+\infty} z^n = \frac{1}{1-z}$. It follows that $f(z) + \log(1-z) = 0$ because $f(0) = \log(1-0) = 0$.

・ロト ・御 ト ・注 ト ・注 ト

Ð,

Let Ω be an open subset of \mathbb{C}^* and let $\alpha \in \mathbb{C}^*$. We define a continuous determination of z^{α} on Ω by any continuous function $g: \Omega \longrightarrow \mathbb{C}$ such that for all $z \in \Omega$, there exists a logarithm h of z such that

$$\begin{cases} g(z) = e^{\alpha h(z)} \\ z = e^{h(z)} \end{cases}$$

In particular, if there exists on Ω a continuous determination (branch) of the logarithm log, then the mapping $z \longrightarrow e^{\alpha \log}$ is a continuous determination of z^{α} on Ω . We use only this type of determination for z^{α} .

Holomorphic Functions Holomorphic Functions Holomorphic Functions

Definition

A function $f: \Omega \longrightarrow \mathbb{C}$ is called analytic on Ω if, whenever $z_0 \in \Omega$ there exists a neighborhood V of z_0 and a power series $\sum_{n\geq 0} a_n(z-z_0)^n$ such that $f(z) = \sum_{n=0}^{+\infty} a_n(z-z_0)^n$ for all $z \in V$.

Holomorphic Functions Holomorphic Functions Holomorphic Functions

Theorem

Any analytic function is holomorphic.

Proof

This theorem results by theorem 2.1. The inverse will be proved in the chapter III. $\hfill \Box$

Theorem

If the power series $\sum_{n\geq 0} a_n z^n$ has a radius of convergence R > 0, its sum $f(z) = \sum_{n=0}^{+\infty} a_n z^n$ is analytic on the disc D(0, R).

・ロト ・回ト ・ヨト ・ヨト

For the proof of this theorem we need the following result on double sums.

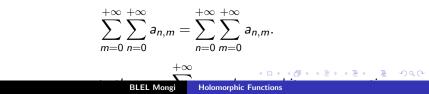
Theorem

Let
$$(a_{n,m})_{n,m\in\mathbb{N}}$$
 be a sequence of complex numbers. If

$$\sum_{m=0}^{+\infty}\sum_{n=0}^{+\infty}|a_{n,m}| < +\infty, \text{ one has}$$

$$\sum_{m=0}^{+\infty}\sum_{n=0}^{+\infty}|a_{n,m}| = \sum_{n=0}^{+\infty}\sum_{m=0}^{+\infty}|a_{n,m}| = \sup_{N,M\in\mathbb{N}}\left[\sum_{m=0}^{M}\sum_{n=0}^{N}|a_{n,m}|\right],$$

and



Holomorphic Functions Holomorphic Functions Holomorphic Functions

Proof

This theorem results by Fubini's theorem. Indeed, we consider the countable measure μ on \mathbb{N} . If $f: \mathbb{N} \longrightarrow [0, +\infty]$ is a μ -integrable function, then $\int_{\mathbb{N}} f(x) d\mu(x) = \sum_{k=0}^{+\infty} f(k)$. Furthermore, if $\sigma: \mathbb{N} \longrightarrow \mathbb{N}$ is a bijection, then

$$\sum_{k=0}^{+\infty} f(k) = \sum_{k=0}^{+\infty} f(\sigma(k)).$$

Let $(b_{m,n})$ be a sequence of non negative real numbers. By Beppo-Levi's theorem

$$\sum_{m=0}^{+\infty} \sum_{n=0}^{+\infty} b_{m,n} = \sum_{n=0}^{+\infty} \sum_{n=0}^{+\infty} b_{m,n}.$$
BLEL More: Holomorphic Eulertions

It suffices to take the function f defined on $\mathbb{N} \times \mathbb{N}$ by $f(n,m) = b_{n,m}$. In our case the function g defined on $\mathbb{N} \times \mathbb{N}$ by $g(n,m) = a_{n,m}$ is integrable, and the theorem results by Fubini's theorem.

イロン イヨン イヨン イヨン

3

Proof of the theorem 3.3 Let $z_0 \in D(0, R)$, $|z_0| = r_0 < R$. We shall show that $f(z) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$, whenever $z \in D(z_0, R - r_0)$. Let $z \in \mathbb{C}$ such that $|z - z_0| < r - r_0 < R - r_0$ and let

$$S(z) = \sum_{k=0}^{+\infty} \sum_{n=k}^{+\infty} C_n^k a_n z_0^{n-k} (z-z_0)^k$$
(7)

イロン イヨン イヨン イヨン

Holomorphic Functions Holomorphic Functions Holomorphic Functions

We shall prove that the series $\sum_{k=0}^{+\infty} \sum_{n=k}^{+\infty} C_n^k a_n z_0^{n-k} (z-z_0)^k$ is

absolutely convergent.

Let

$$R(z) = \sum_{k=0}^{+\infty} \sum_{n=k}^{+\infty} C_n^k |a_n| |z_0|^{n-k} |z-z_0|^k$$
(8)

$$R(z) \leq \sum_{k=0}^{+\infty} \sum_{n=k}^{+\infty} C_n^k |a_n| r_0^{n-k} (r-r_0)^k = \sum_{n=0}^{+\infty} |a_n| (\sum_{k=0}^n C_n^k r_0^{n-k} (r-r_0)^k) = \sum_{n=0}^{+\infty} |a_n| r^n < +\infty.$$
 Thus the series which defines S is absolutely convergent, thus it is commutatively convergent.

イロン 不同 とくほと 不良 と

臣

Holomorphic Functions Holomorphic Functions Holomorphic Functions

$$S(z) = \sum_{k=0}^{+\infty} \frac{1}{k!} (z - z_0)^k \left(\sum_{n=k}^{+\infty} \frac{n!}{(n-k)!} a_n z_0^{n-k} \right), \text{ this means that}$$

$$S(z) = \sum_{k\geq 0} \frac{f^{(k)}(z_0)}{k!} (z - z_0)^k \text{ and}$$

$$S(z) = \sum_{n=0}^{+\infty} a_n \left(\sum_{k=0}^n C_n^k z_0^{n-k} (z - z_0)^k \right) = \sum_{n=0}^{+\infty} a_n z^n = f(z).$$

It follows that
$$f(z) = \sum_{k=0}^{\infty} \frac{f(z_0)}{k!} (z - z_0)^k$$
, whenever $z \in D(z_0, R - r_0)$.

◆□ > ◆□ > ◆ □ > ◆ □ > ●

2

Theorem (Principle of the Analytic Continuation)

Let f be an analytic function on a domain Ω of \mathbb{C} and let $z_0 \in \Omega$. The following conditions are equivalent

- 1. f is identically zero on Ω .
- 2. There exists a neighborhood V of z_0 such that f is identically zero on V.
- 3. For all $n \ge 0$, $f^{(n)}(z_0) = 0$.

イロン イヨン イヨン イヨン

Proof

We shall show that $2) \Rightarrow 1$ (the other properties are trivial). Let $A = \{z \in \Omega; f \equiv 0 \text{ on a neighborhood of } z\}$. A is a non empty open subset by hypothesis. Then it suffices to show that it is closed in Ω . Let $(z_n)_n$ be a sequence of A which converges to $a \in \Omega$. Since $z_n \in A$, then $f^{(k)}(z_n) = 0$ for all $k \in \mathbb{N}$ and by continuity $f^{(k)}(a) = 0$. f is analytic, this yields that f is zero on a neighborhood of a.

Corollary

Let f and g be two analytic functions on a domain Ω of \mathbb{C} . If f and g coincide on a neighborhood of a point of Ω , then they coincide on Ω .

Theorem (Principle of Isolated Zeros)

Let f be an analytic function on a domain Ω of \mathbb{C} . If f is not identically zero on Ω , the set of zeros of f is a discrete closed subset of Ω .

Proof

Let $A = f^{-1}\{0\}$ be the set of zeros of f. A is closed since f is continuous. Let $z_0 \in A$, by theorem 3.5, there exists k such that $f^{(k)}(z_0) \neq 0$. We choose k the smallest integer such that $f^{(k)}(z_0) \neq 0$. So the power series of f at z_0 is $f(z) = a_k(z - z_0)^k + (z - z_0)^k g(z)$, where $a_k \neq 0$ and $g(z_0) = 0$, $g(z) = \sum a_{n+k}(z-z_0)^n$. Since $g(z_0) = 0$, there exists a n=1neighborhood V of z_0 such that $|g(z)| < |a_k|$ for all $z \in V$. Thus $|f(z)| > |z - z_0|^k (|a_k| - |g(z)|) > 0$ for $z \in V \setminus \{z_0\}$. It results that z_0 is the only zero of f in V.

イロン 不同 とくほど 不良 とう

Corollary

If f is an analytic function and non-identically zero on a domain Ω , then any compact subset of Ω contains only a finite number of zeros of f.

Corollary

The ring of the analytic functions on a domain Ω is integral.

Corollary (The Identity Theorem)

If f and g are two analytic functions on a domain Ω , which coincides on a set admitting a cluster point (or an accumulation point) in Ω , then they coincide on Ω .