Phys 103 Chapter 3

Vectors

Dr. Wafa Almujamammi

LECTURE OUTLINE

- 3.1 Coordinate Systems
- 3.2 Vector and Scalar Quantities
- 3.3 Some Properties of Vectors
- 3.4 Components of a Vector and Unit Vectors

Cartesian Coordinate System

- Used to describe the position of a point in a space
- Coordinate system consists of
- a fixed reference point called the origin
- specific axes with scales and labels

- Instructions on how to label a point relative to the origin and the axes
- Also called rectangular coordinate system
- x - and y - axes intersect at the origin
- Labeled are Points (x, y)

Polar Coordinate System (r, θ)

- represent a point in a plan
- Origin and reference line are noted
- Point is distance r from the origin in the direction of angle θ, counterclockwise from positive x-axis
- Points are labeled as (r, θ)

Polar to Cartesian Coordinates $(r, \theta) \longrightarrow(x, y)$

The right triangle used to relate (x, y) to (r, θ).

- Based on forming a right triangle $\sin \theta=\frac{y}{r}$ from r and θ $\cos \theta=\frac{x}{r}$
- $x=r \cos \theta$
- $y=r \sin \theta$

$$
\tan \theta=\frac{y}{x}
$$

$$
r=\sqrt{x^{2}+y^{2}}
$$

4- What are the Cartesian coordinates of the point $(r, \theta)=\left(3,60^{\circ}\right)$?
$\stackrel{\ominus}{(}, \boldsymbol{r}, \theta)=\left(3,60^{\circ}\right)$
a. $(1.8,2.1)$
b. $(1.5,2.6)$
c. $(1.5,3.6)$
d. $(1.5,3)$

$$
\begin{aligned}
& x=r \cos \theta=3 \times 1 / 2=1.5 \\
& y=r \sin \theta==3 \times 0.866=2.6
\end{aligned}
$$

Cartesian to Polar Coordinates $(x, y) \longrightarrow(r, \theta)$

- r is the hypotenuse and θ an angle

$$
\begin{aligned}
& \tan \theta=\frac{y}{x} \\
& r=\sqrt{x^{2}+y^{2}}
\end{aligned}
$$

- θ must be counterclockwise from positive x axis for these equations to be valid

Example:
3- The polar coordinates (r, θ) of the Cartesian coordinates $(-3.5,-2.5)$ is:
a. $\left(4.3,216^{\circ}\right)$
b. $\left(10,100^{\circ}\right)$
c. $\left(120,17^{\circ}\right)$
d. $\left(30,150^{\circ}\right)$

Example 3.1

- The Cartesian coordinates of a point in the $x y$ plane are $(x, y)=(-3.50,-2.50) \mathrm{m}$, as shown in the figure. Find the polar coordinates of this point. (r, θ)
- Solution:

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}}=\sqrt{(-3.50 \mathrm{~m})^{2}+(-2.50 \mathrm{~m})^{2}}=4.30 \mathrm{~m} \\
& \tan \theta=\frac{y}{x}=\frac{-2.50 \mathrm{~m}}{-3.50 \mathrm{~m}}=0.714 \\
& \tan ^{-1} 0.714=36^{\circ} \\
& \theta=36+180=216^{\circ}
\end{aligned}
$$

Vectors and Scalars

- A scalar quantity
is completely specified by a single value with an appropriate unit and has no direction.
- A vector quantity
is completely described by a number and appropriate units plus a direction.

Vector Notation

- When handwritten, use an arrow: \vec{A}
- When printed, will be in bold print: A
- The magnitude of the vector has physical units A or $|\overrightarrow{\boldsymbol{A}}|$
- The magnitude of a vector is always a positive number

Vector Example

- A particle travels from A to B along the path shown by the dotted red line
- This is the distance traveled and is a scalar
- The displacement is the solid line from A to B
- The displacement is independent of the path taken between the two points

- Displacement is a vector

Equality of Two Vectors

- Two vectors are equal if they have the same magnitude and the same direction
- $\mathbf{A}=\mathbf{B}$ if $A=B$ and they point along parallel lines
- All of the vectors shown are equal

Adding Vectors

- When adding vectors, their directions must be taken into account
- Units must be the same

There are two ways to adding Vectors
(1) Graphical Methods: Use scale drawing
(2) Algebraic Methods: More convenient

Adding Vectors Graphically

- Choose a scale
- Draw the first vector with the appropriate length and in the direction specified, with respect to a coordinate system

- Draw the next vector B with the appropriate length and in the direction specified, with respect to a coordinate system. Its origin is the end of vector A
- Continue drawing the vectors "tip-to-tail"

- The resultant is drawn from the origin of \mathbf{A} to the end of the last vector
- Measure the length of \mathbf{R} and its angle

Adding Vectors Graphically

- When you have many vectors, just keep repeating the process until all are included
- The resultant is still drawn from the origin of the first vector to the end of the last vector

Adding Vectors, Rules

- When two vectors are added, the sum is independent of the order of the addition.
- This is the commutative law of addition
- $A+B=B+A$

.Adding Vectors, Rules cont

- When adding three or more vectors, their sum is independent of the way in which the individual vectors are grouped
- This is called the Associative Property of Addition
- $(A+B)+C=A+(B+C)$

Adding Vectors

- When adding vectors, all of the vectors must have
\checkmark the same units
\checkmark the same type of quantity (cannot add a displacement to a velocity)
- The negative of a vector: is defined as the vector that, when added to the original vector, gives a resultant of zero
- Represented as -A
- $\mathbf{A}+(-\mathbf{A})=0$
- The negative of the vector will have the same magnitude, but point in the opposite direction

Subtracting Vectors

If $\mathbf{A}-\mathbf{B}$, then use $\mathbf{A}+(-\mathbf{B})$

Multiplying or Dividing a Vector by a Scalar

- The result of the multiplication or division is a vector
- The magnitude of the vector is multiplied or divided by the scalar, but the direction is same for the original and the new vector
- If the scalar is positive, the direction of the result is the same as of the original vector
- If the scalar is negative, the direction of the result is opposite that of the original vector

Components of a Vector

- A component is a projection of a vector along an axis.
- Any vector can be completely described by its components.
- It is useful to use rectangular components
- These are the projections of the vector along the x - and y-axes

Components of a Vector

$\mathbf{A}_{\mathbf{x}}$ and $\mathbf{A}_{\mathbf{y}}$ are the component vectors of \mathbf{A}
They are vectors and follow all the rules for vectors
A_{x} and A_{y} are scalars, and will be referred to as the components of A

- The x-component of a vector is the projection along the x-axis

$\cos \theta=A_{x} / A$
$\sin \theta=A_{y} / A$
- The y-component of a vector is the projection along the y-axis

$$
A_{y}=A \sin \theta
$$

Components of a Vector

- The y-component is moved to the end of the x-component. This is due to the fact that any vector can be moved parallel to itself without being affected
- This completes the triangle

- only if θ is taken with respect to the x-axis

$$
A=\sqrt{A_{x}^{2}+A_{y}^{2}} \quad \text { and } \quad \theta=\tan ^{-1} \frac{A_{y}}{A_{x}}
$$

Components of a Vector

- The components can be positive or negative and will have the same units as the original vector
- The signs of the components will depend on the angle

Unit Vectors

A unit vector is a dimensionless vector with a magnitude of exactly 1.

Unit vectors are used to specify a direction and have no other physical significance.

Unit Vectors, cont.

- The symbols

$$
\hat{i}, \hat{\mathrm{j}} \text {, and } \hat{\mathrm{k}}
$$

represent unit vectors

- They form a set of mutually perpendicular vectors

Unit Vectors in Vector Notation

- $\mathbf{A}_{\mathbf{x}}$ is the same as $A_{x} \hat{\imath}$ and $\mathbf{A}_{\mathbf{y}}$ is the same as $A_{y} \hat{\jmath}$ and $\mathbf{A}_{\mathbf{z}}$ is the same as $A_{z} \hat{k}$

The complete vector can be expressed as

$$
\mathbf{A}=A_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}}+A_{z} \hat{\mathbf{k}}
$$

Adding Vectors with Unit Vectors

Adding Vectors with Unit Vectors

- Using $\mathbf{R}=\mathbf{A}+\mathbf{B}$
- Then

$$
\begin{aligned}
& \mathbf{R}=\left(A_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}}\right)+\left(B_{x} \hat{\mathbf{i}}+B_{y} \hat{\mathbf{j}}\right) \\
& \mathbf{R}=\left(A_{x}+B_{x}\right) \hat{\mathbf{i}}+\left(A_{y}+B_{y}\right) \hat{\mathbf{j}} \\
& \mathbf{R}=R_{x}+R_{y}
\end{aligned}
$$

- and so $R_{x}=A_{x}+B_{x}$ and $R_{y}=A_{y}+B_{y}$

$$
R=\sqrt{R_{x}^{2}+R_{y}^{2}} \quad \theta=\tan ^{-1} \frac{R_{y}}{R_{x}}
$$

Example 3.3

Find the sum of two displacement vectors $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ lying in the xy plane and given by

$$
\overrightarrow{\mathbf{A}}=(2.0 \hat{\mathrm{i}}+2.0 \hat{\mathrm{j}}) \mathrm{m} \text { and } \overrightarrow{\mathbf{B}}=(2.0 \hat{\mathrm{i}}-4.0 \hat{\mathbf{j}}) \mathrm{m}
$$

SOLUTION

$$
\begin{gathered}
\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}=(2.0+2.0) \hat{\mathrm{i}} \mathrm{~m}+(2.0-4.0) \hat{\mathrm{j}} \mathrm{~m} \\
R_{x}=4.0 \mathrm{~m} \quad R_{y}=-2.0 \mathrm{~m} \\
R=\sqrt{R_{w}^{2}+R_{y}^{2}}=\sqrt{(4.0 \mathrm{~m})^{2}+(-2.0 \mathrm{~m})^{2}}=\sqrt{20} \mathrm{~m}=4.5 \mathrm{~m} \\
\tan \theta=\frac{R_{y}}{R_{v}}=\frac{-2.0 \mathrm{~m}}{4.0 \mathrm{~m}}=-0.50
\end{gathered}
$$

Your calculator likely gives the answer -27° for $\theta=\tan ^{-1}(-0.50)$. This answer is correct if we interpret it to mean 27° clockwise from the x axis. Our standard form has been to quote the angles measured counterclockwise from the $+x$ axis, and that angle for this vector is $\theta=330^{\circ}$.

Example 3.4 The Resultant Displacement

A particle undergoes three consecutive displacements. $\Delta \vec{r}_{1}=(15 \hat{i}+30 \hat{j}+12 \hat{k}) \mathrm{cm}, \Delta \vec{r}_{q}=(23 \hat{i}-14 \hat{j}-5.0 \hat{\mathbf{k}}) \mathrm{cm}$, and $\Delta \vec{r}_{3}=(-13 \hat{i}+1 \hat{j} \hat{j}) \mathrm{cm}$. Find unitrector notation for the resultant displacement and its magnitude.

SOLUTION

$$
\begin{aligned}
\Delta \overrightarrow{\mathrm{r}} & =\Delta \overrightarrow{\mathrm{r}}_{1}+\Delta \overrightarrow{\mathrm{r}}_{2}+\Delta \overrightarrow{\mathrm{r}}_{3} \\
& =(15+23-13) \hat{\mathbf{i}} \mathrm{cm}+(30-14+15) \hat{\mathbf{j}} \mathrm{cm}+(12-5.0+0) \hat{\mathbf{k}} \mathrm{cm} \\
& =(25 \hat{\mathbf{i}}+31 \hat{\mathbf{j}}+7.0 \hat{\mathbf{k}}) \mathrm{cm}
\end{aligned}
$$

$$
R=\sqrt{R_{x}^{2}+R_{y}^{2}+R_{z}^{2}}
$$

$$
=\sqrt{(25 \mathrm{~cm})^{2}+(31 \mathrm{~cm})^{2}+(7.0 \mathrm{~cm})^{2}}=40 \mathrm{~cm}
$$

Example 3.5 - Taking a Hike

 1A hiker begins a trip by first walking 25.0 km southeast from her car. She stops and sets up her tent for the night. On the second day, she walks 40.0 km in a direction 60.0° north of east, at which point she discovers a forest ranger's tower.

Example 3.5 - Solution, Conceptualize and Categorize

- Conceptualize the problem by drawing a sketch as in the figure.
- Denote the displacement vectors on the first and second days by $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$ respectively.
- Use the car as the origin of coordinates.
- The vectors are shown in the figure.
- Drawing the resultant $\overrightarrow{\boldsymbol{R}}$, we can now categorize this problem as an addition of two vectors.

Example 3.5 - Solution, Analysis

Analyze this problem by using our new knowledge of vector components. The first displacement has a magnitude of 25.0 km and is directed 45.0° below the positive x axis. Its components are:
$A_{x}=\mathrm{A} \cos \left(45.0^{\circ}\right)=$
$(25.0 \mathrm{~km})(0.707)=17.7 \mathrm{~km}$
$A_{\mathrm{y}}=\mathrm{A} \sin \left(45.0^{\circ}\right)=$
$(25.0 \mathrm{~km})(-0.707)=-17.7 \mathrm{~km}$

Example 3.5 - Solution, Analysis 2

The second displacement has a magnitude of 40.0 km and is 60.0°
north of east. Its components are:

$$
\begin{aligned}
& \mathrm{B}_{x}= \mathrm{B} \cos \left(60.0^{\circ}\right)= \\
& \quad40.0 \mathrm{~km})(0.500)=20.0 \mathrm{~km} \\
& \mathrm{~B}_{\mathrm{y}}= \mathrm{B} \sin \left(60.0^{\circ}\right)= \\
& \quad(40.0 \mathrm{~km})(0.866)=34.6 \mathrm{~km}
\end{aligned}
$$

Example 3.5 - Solution, Analysis 3

The negative value of A_{y} indicates that the hiker walks in the negative y direction on the first day. The signs of A_{x} and A_{y} also are evident from the figure. The signs of the components of B are also confirmed by the diagram.

Example 3.5 - Solution, Analysis

Determine the components of the hiker's resultant displacement for the trip.

- Find an expression for the resultant in terms of unit vectors. The resultant displacement for the trip has components given by
$R_{x}=\mathrm{A}_{x}+\mathrm{B}_{x}=17.7 \mathrm{~km}+20.0 \mathrm{~km}$
$=37.7 \mathrm{~km}$

$$
\begin{aligned}
\mathrm{R}_{y} & =\mathrm{A}_{y}+\mathrm{B}_{y}=-17.7 \mathrm{~km}+34.6 \mathrm{~km} \\
& =16.9 \mathrm{~km}
\end{aligned}
$$

In unit vector form
$\overrightarrow{\boldsymbol{R}}=(37.7 \hat{\imath}+16.9 \hat{\jmath}) \mathrm{km}$

Example 3.5 - Solution, Finalize

The resultant vector has a magnitude of 41.3 km and is directed 24.1° north of east.
The units of $\overrightarrow{\boldsymbol{R}}$ are km, which is reasonable for a displacement.
From the graphical representation, estimate that the final position of the hiker is at about ($38 \mathrm{~km}, 17 \mathrm{~km}$) which is consistent with the components of the resultant.

PROBLEMS

Section 3.1 Coordinate Systems

1. The polar coordinates of a point are $r=5.50 \mathrm{~m}$ and $\theta=240^{\circ}$. What are the Cartesian coordinates of this point?

SOLUTIONS TO PROBLEM:

- $\mathrm{x}=\mathrm{r} \cos \theta$

$$
\begin{aligned}
& \sin \theta=\frac{y}{r} \\
& \cos \theta=\frac{x}{r} \\
& \tan \theta=\frac{y}{x}
\end{aligned}
$$

- $y=r \sin \theta$

PROBLEMS

- Section 3.1 Coordinate Systems

4. Two points in the $x y$ plane have Cartesian coordinates (2.00, -4.00) m and $(-3.00,3.00) \mathrm{m}$. Determine (a) the distance between these points and (b) their polar coordinates.

SOLUTIONS TO PROBLEM:

$$
\begin{gathered}
\mathrm{d}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
r_{1}=\sqrt{x_{1}^{2}+y_{1}^{2}} \text { and } r_{2}=\sqrt{x_{2}^{2}+y_{2}^{2}} \\
\theta_{1}=\tan ^{-1} \frac{\mathrm{y}_{1}}{x_{1}} \text { and } \theta_{2}=\tan ^{-1} \frac{\mathrm{y}_{2}}{x_{2}}
\end{gathered}
$$

PROBLEMS

Section 3.4 Components of a Vector and Unit Vectors

19. A vector has an x component of -25.0 units and a y component of 40.0 units. Find the magnitude and direction of this vector.

SOLUTIONS TO PROBLEM:

$$
\begin{gathered}
\mathrm{A}=\sqrt{A_{x}^{2}+A_{y}^{2}} \\
\tan \emptyset=\frac{\left|A_{y}\right|}{\left|A_{x}\right|} \rightarrow \emptyset=\tan ^{-1}\left(\frac{\left|A_{y}\right|}{\left|A_{x}\right|}\right) \\
\theta=180-\emptyset
\end{gathered}
$$

PROBLEMS

Section 3.4 Components of a Vector and Unit Vectors

21. Obtain expressions in component form for the position vectors having the following polar coordinates: (a) 12.8 m , 150° (b) $3.30 \mathrm{~cm}, 60.0^{\circ}$ (c) $22.0 \mathrm{in} ., 215^{\circ}$.

SOLUTIONS TO PROBLEM:

$$
x=r \cos \theta \text { and } \quad y=r \sin \theta
$$

PROBLEMS

Section 3.4 Components of a Vector and Unit Vectors

27. Given the vectors

$$
\boldsymbol{A}=2.00 \hat{\imath}+6.00 \hat{\jmath}
$$

And

$$
\mathbf{B}=3.00 \hat{\imath}+2.00 \hat{\jmath}
$$

(a) draw the vector sum $\mathbf{C}=\mathbf{A}+\mathbf{B}$ and the vector difference $\mathbf{D}=\mathbf{A}-\mathbf{B}$.
(b) Calculate \mathbf{C} and \mathbf{D}, first in terms of unit vectors and then in terms of polar coordinates, with angles measured with respect to the $+x$ axis. SOLUTIONS TO PROBLEM:

$$
\begin{aligned}
& \boldsymbol{C}=\left(A_{x}+B_{x}\right) \hat{\imath}+\left(A_{y}+B_{y}\right) \hat{\jmath} \\
& \boldsymbol{D}=\left(A_{x}-B_{x}\right) \hat{\imath}+\left(A_{y}-B_{y}\right) \hat{\jmath}
\end{aligned}
$$

$C_{x}=A_{x}+B_{x}$ and $C_{\mathrm{y}}=A_{y}+B_{y} \mathrm{C}=\sqrt{C_{x}{ }^{2}+C_{y}{ }^{2}}$

PROBLEMS

Section 3.4 Components of a Vector and Unit Vectors

30. Vector \mathbf{A} has x and y components of -8.70 cm and 15.0 cm , respectively; vector \mathbf{B} has x and y components of 13.2 cm and -6.60 cm , respectively. If $\mathbf{A}-\mathbf{B}+3 \mathbf{C}=0$, what are the components of \mathbf{C} ?

SOLUTIONS TO PROBLEM:

$C_{x}=A_{x}+B_{x}$ and $C_{y}=A_{y}+B_{y}$

PROBLEMS

Section 3.4 Components of a Vector and Unit Vectors

31. Consider the two vectors $\boldsymbol{A}=3 \hat{\imath}-2 \hat{\jmath}$ and $\mathbf{B}=-\hat{\imath}-4 \hat{\jmath}$.

Calculate
(a) $\mathrm{A}+\mathrm{B}$,
(b) A-B,
(c) $|\mathbf{A}+\mathbf{B}|$,
(d) $|\mathbf{A}-\mathbf{B}|$,
and (e) the directions of $\mathbf{A}+\mathbf{B}$ and $\mathbf{A}-\mathbf{B}$.
SOLUTIONS TO PROBLEM:

$$
\begin{gathered}
\mathbf{A}+\mathbf{B}=\left(A_{x}+B_{x}\right) \hat{\imath}+\left(A_{y}+B_{y}\right) \hat{\jmath} \\
\mathbf{A}-\mathbf{B}=\left(A_{x}-B_{x}\right) \hat{\imath}+\left(A_{y}-B_{y}\right) \hat{\jmath} \\
\quad|\mathbf{A}+\mathbf{B}|=\left({ }_{\left(A_{x}+B_{x}\right)^{2}+\left(A_{y}+B_{y}\right)^{2}}\right.
\end{gathered}
$$

PROBLEMS

Section 3.4 Components of a Vector and Unit Vectors

33. A particle undergoes the following consecutive displacements: 3.50 m south, 8.20 m northeast, and 15.0 m west.
What is the resultant displacement?

SOLUTIONS TO PROBLEM:

$$
\begin{gathered}
d_{1}=(-3.5 \hat{\jmath}) m \\
d_{2}=(8.20 \cos 45 \hat{\imath}+8.20 \sin 45) m \\
d_{1}=(-15 \hat{\imath}) m \\
R=d_{1}+d_{2}+d_{3}
\end{gathered}
$$

The magnitude of the resultant displacement is $\mathrm{R}=|\boldsymbol{R}|=\sqrt{R_{x}{ }^{2}+R_{y}{ }^{2}}$ and The direction is $\theta=\boldsymbol{\operatorname { t a n }}^{-1}\left(\frac{R_{y}}{R_{x}}\right)$

PROBLEMS

- Section 3.4 Components of a Vector and Unit Vectors

39. Vector \mathbf{B} has x, y, and z components of $4.00,6.00$, and 3.00 units, respectively. Calculate the magnitude of \mathbf{B} and the angles that \mathbf{B} makes with the coordinate axes.
SOLUTIONS TO PROBLEM:

$$
\begin{aligned}
\mathbf{B} & =B_{x} \hat{\imath}+B_{y} \hat{\jmath}+B_{z} \hat{k} \\
|\boldsymbol{B}| & =\sqrt{B_{x}^{2}+B_{y}^{2}+B_{z}^{2}} \\
\alpha=\cos ^{-\mathbf{1}} \frac{\mathbf{B}_{\mathbf{x}}}{|\boldsymbol{B}|} ; \beta & =\cos ^{-\mathbf{1}} \frac{\mathbf{B}_{\boldsymbol{y}}}{|\boldsymbol{B}|} \text { and } \gamma=\cos ^{-\mathbf{1}} \frac{\mathbf{B}_{\boldsymbol{z}}}{|\boldsymbol{B}|}
\end{aligned}
$$

PROBLEMS

- Section 3.4 Components of a Vector and Unit Vectors

49. Three displacement vectors of a croquet ball are shown in Figure P3.49, where $|\mathbf{A}|=20.0$ units, $|\mathbf{B}|=40.0$ units, and $|\mathbf{C}|=30.0$ units. Find (a) the resultant in unit-vector notation and (b) the magnitude and direction of the resultant displacement.

SOLUTIONS TO PROBLEM:

$$
\begin{aligned}
& R_{x}=(40 \cos 45 \hat{\imath}+30 \cos 45) \\
& R_{y}=(40 \sin 45 \hat{\imath}-30 \sin 45)
\end{aligned}
$$

Figure P3.49
$\mathrm{R}=|\boldsymbol{R}|=\sqrt{R_{x}{ }^{2}+R_{y}{ }^{2}}$ and $\theta=\boldsymbol{\operatorname { a n }}^{-1}\left(\frac{R_{y}}{R_{x}}\right)$

PROBLEMS

Section 3.4 Components of a Vector and Unit Vectors

50. If $\mathbf{A}=\left(6.00^{\wedge} \mathbf{i}-8.00^{\wedge} \mathbf{j}\right)$ units, $\mathbf{B}=\left(-8.00^{\wedge} \mathbf{i}+3.00^{\wedge} \mathbf{j}\right)$ units, and $\mathbf{C}=(2$
$6.0^{\wedge} \mathbf{i}+19.0^{\circ} \mathbf{j}$) units, determine a and b such that $a \mathbf{A}+b \mathbf{B}+$ $\mathrm{C}=0$.

SOLUTIONS TO PROBLEM:

Taking components along ${ }^{\mathbf{i}}$ and ${ }^{\mathbf{j}} \mathbf{j}$, we get two equations: $6.00 a-8.00 b+26.0=0$ and $-8.00 a+3.00 b+19.0=0$.
Solving simultaneously,

$$
a=5.00, b=7.00 .
$$

Therefore, $\quad 5.00 \mathbf{A}+7.00 \mathbf{B}+\mathbf{C}=0$.

