Conformal Mappings And Riemann's Theorem

BLEL Mongi

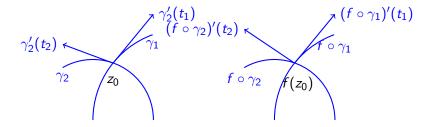
Department of Mathematics King Saud University

February 14, 2023

Theorem

Let $f: \Omega \longrightarrow \mathbb{C}$ be a holomorphic function on an open subset Ω . Then f preserves the oriented angles at all $z \in \Omega$ where $f'(z) \neq 0$.

Proof



Let γ_1 and γ_2 be two curves continuously differentiable such that $\gamma_1(t_0)=\gamma_2(t_1)=z_0,\ \gamma_1'(t_0)\neq 0$ and $\gamma_2'(t_1)\neq 0$. The tangent vector to γ_1 (respectively to γ_2) at z_0 is given by $\gamma_1'(t_0)$ (respectively $\gamma_2'(t_1)$). There exists $\lambda>0$ and $\theta\in\mathbb{R}$ such that $\gamma_2'(t_1)=\lambda e^{\mathrm{i}\theta}\gamma_1'(t_0).$ θ is the oriented angle between the tangent vectors to γ_1 and γ_2 at z_0 . The tangent vector to $f\circ\gamma_1$ (respectively $f\circ\gamma_2$) at $f(z_0)$ is given by $\gamma_1'(t_0).f'(z_0)$ (respectively $\gamma_2'(t_0).f'(z_0)$) and we have $f'(z_0).\gamma_2'(t_1)=\lambda e^{\mathrm{i}\theta}\gamma_1'(t_0)f'(z_0)$. Then θ is again the oriented angle between the tangent vectors to $f\circ\gamma_1$ and $f\circ\gamma_2$. Thus f preserves the oriented angles.

Definition

A holomorphic function f on an open set Ω is called a conformal mapping if $f'(z) \neq 0$, $\forall z \in \Omega$.

Recall

- If $f'(z_0) \neq 0$, then f is injective on a neighborhood of z_0 .
- ② If $f'(z_0) = 0$, then f is not injective on any neighborhood of z_0 .
- **3** If $f'(z) \neq 0$ for every $z \in \Omega$, then f is locally injective but not necessary injective on Ω . (Example e^z on \mathbb{C}).
- If $f \in \mathcal{H}(\Omega)$ is injective, then $f(\Omega)$ is an open subset and f^{-1} is holomorphic from $f(\Omega)$ onto Ω and $f'(z) \neq 0$, $\forall z \in \Omega$.

Definition

Let Ω_1 and Ω_2 be two open subsets and $f:\Omega_1\longrightarrow\Omega_2$ a holomorphic function. f is called a conformal mapping from Ω_1 onto Ω_2 if f is an analytic isomorphism from Ω_1 onto Ω_2 .

Theorem

For all $a \in D$, the mapping $z \longmapsto h_a(z) = \frac{a-z}{1-\bar{a}z}$ is holomorphic and bijective from D onto itself, $h_a(0) = a$, $h_a(a) = 0$. Furthermore $h_a \circ h_a = \operatorname{id}$ and h_a is bijective from the boundary of the unit disc onto itself. (h_a is a conformal mapping from the unit disc onto itself.)

Proof

 $h_a(0)=a$, $h_a(a)=0$, then $h_a\circ h_a(0)=0$ and $h_a\circ h_a(a)=a$, then by Schwarz lemma $h_a\circ h_a(z)=z$. Moreover, for |z|=1, $|h_a(z)|=1$, then by the maximum principle, h_a is a biholomorphism of the unit disc.

Theorem

Let f be a conformal mapping from the unit disc D onto itself, then there exists $a \in D$, $\theta \in \mathbb{R}$ such that $f(z) = e^{i\theta} h_a(z)$.

Proof

Let $a \in D$ such that f(a) = 0 and let $g(z) = f \circ h_a(z)$. We have g(0) = 0 and $|g(z)| \le 1$, whenever $z \in D$. By Schwarz's lemma, $|g(z)| \le |z|$ for |z| < 1. But g is bijective from the unit disc onto itself, then there exists $\lambda \in \mathbb{C}$ such that $|\lambda| = 1$ and $g(z) = \lambda z$. If $\lambda = e^{i\theta}$, then $f \circ h_a(z) = e^{i\theta}z$ and $f(z) = e^{i\theta}h_a(z)$.

Г

Theorem

Let $\alpha \in \mathcal{H}^+ = \{z \in \mathbb{C}; \ \mathrm{Im} z > 0\}$. The mapping $f_{\alpha}(z) = \frac{z - \alpha}{z - \bar{\alpha}}$ is a conformal mapping from \mathcal{H}^+ onto D. $f_{\alpha}(\mathbb{R}) = \mathcal{C}(0,1) \setminus \{1\}$, f_{α} is bijective from \mathbb{R} onto $\mathcal{C}(0,1) \setminus \{1\}$.

Proof

$$\begin{array}{l} \alpha=a+\mathrm{i} b,\ z=x+\mathrm{i} y,\ \mathrm{with}\ b>0\ \mathrm{and}\ y>0.\\ f_\alpha(z)=\frac{(x-a)+\mathrm{i} (y-b)}{(x-a)+\mathrm{i} (y+b)}.\ \mathrm{Since}\ b>0\ \mathrm{and}\ y>0,\\ (y-b)^2<(y+b)^2,\ \mathrm{thus}\ |f_\alpha(z)|^2=\frac{(x-a)^2+(y-b)^2}{(x-a)^2+(y+b)^2}.<1.\\ f_\alpha(z_1)=f_\alpha(z_2)\iff z_1(\alpha-\bar\alpha)=z_2(\alpha-\bar\alpha)\iff z_1=z_2,\ \mathrm{thus}\\ f_\alpha\ \mathrm{is}\ \mathrm{injective}.\ \mathrm{For}\ \mathrm{all}\ z\in D,\ h_\alpha(w)=z\ \mathrm{with}\ w=\frac{\alpha-\bar\alpha z}{1-z}.\ \mathrm{lt}\\ \mathrm{results}\ \mathrm{that}\ f_\alpha\ \mathrm{is}\ \mathrm{bijective}\ \mathrm{from}\ \mathcal{H}^+\ \mathrm{onto}\ D. \end{array}$$

If
$$x \in \mathbb{R}$$
, $|f_{\alpha}(x)| = |\frac{x - \alpha}{x - \bar{\alpha}}| = 1$, it results that if $z \neq 1$, $f_{\alpha}(\frac{\alpha - \bar{\alpha}z}{1 - z}) = z$.

Theorem

Every conformal mapping from \mathcal{H}^+ onto D is of the form

$$f(z) = e^{\mathrm{i}\theta} f_{\alpha}(z) = e^{\mathrm{i}\theta} \frac{z - \alpha}{z - \overline{\alpha}}; \quad \mathrm{whith} \,\, \theta \in \mathbb{R}, \,\, \alpha \in \mathcal{H}^+.$$

Proof

Let $\alpha \in \mathcal{H}^+$ be such that $f(\alpha) = 0$, the mapping $g(z) = f \circ f_{\alpha}^{-1}(z)$ is an automorphism of the unit disc and g(0) = 0, then there exists $\theta \in \mathbb{R}$ such that $g(z) = e^{\mathrm{i}\theta}z$, which yields that $f(z) = e^{\mathrm{i}\theta}f_{\alpha}(z)$, $\forall z \in \mathcal{H}^+$.

Definition

A Möbius transformation or a linear transformation is a mapping of the form $f(z) = \frac{az+b}{cz+d}$ with $ad-bc \neq 0$.

Remarks 1:

- 1) Note that if ad = bc the same expression would yield a constant.
- 2) The coefficients aren't unique, since we can multiply them all by any nonzero complex constant.
- 3) The Möbius transformation $f(z)=\frac{az+b}{cz+d}$ with $ad-bc\neq 0$ is defined on $\mathbb{C}\setminus\{\frac{-d}{c}\}$ if $c\neq 0$. We add to \mathbb{C} a new point denoted ∞ and we define $f(\frac{-d}{c})=\infty$, $f(\infty)=\frac{a}{c}$ if $c\neq 0$ and $f(\infty)=\infty$ if c=0. The set $\mathbb{C}\cup\{\infty\}$ is called the extended complex plane and denoted by \mathbb{C}_{∞} . A Möbius transformation is then defined on \mathbb{C}_{∞} with values in \mathbb{C}_{∞} .

4) Any Möbius transformation is a bijective mapping from \mathbb{C}_{∞}

onto
$$\mathbb{C}_{\infty}$$
. Indeed if $w \in \mathbb{C}_{\infty}$, $w = f(z) = \frac{az+b}{cz+d} \Leftrightarrow z = \frac{-dw+b}{cw-a} = f^{-1}(w)$ which is a Möbius transformation. Thus f is a bijection from \mathbb{C}_{∞} onto \mathbb{C}_{∞} .

transformation. Thus f is a bijection from \mathbb{C}_{∞} onto \mathbb{C}_{∞} .

5) The set \mathcal{H} of Möbius transformations is a group under composite of mappings.

6) Let f be a Möbius transformation, $f(z) = \frac{az+b}{cz+d}$. We can suppose that ad-bc=1, and we associate to f the matrix $M_f = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. This matrix is in $\mathrm{SL}(2,\mathbb{C})$, the special linear group of \mathbb{C}^2 .

Inversely if $M=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}(2,\mathbb{C})$, we associate the Möbius transformation $f(z)=\frac{az+b}{cz+d}$ and the matrix $-M_f$ gives the same Möbius transformation. Thus we can identify the group of Möbius transformations with the projective special linear group $\mathrm{PSL}(2,\mathbb{C})$, the group of 2×2 matrices with complex coefficients, determinant =1, modulo the equivalence relation $A\sim -A$.

7) Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $B = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$ two matrix in $\mathrm{PSL}(2,\mathbb{C})$,

$$f(z) = \frac{az+b}{cz+d}$$
 and $g(z) = \frac{a'z+b'}{c'z+d'}$ the associate Möbius transformations, then $f \circ g$ is the Möbius transformation associate to the matrix AB .

8) If f is a Möbius transformation associated to the matrix A, then f^{-1} is the Möbius transformation associated to the matrix A^{-1} .

Lemma

The Möbius transformation $z \mapsto f(z) = \frac{1}{z}$ transforms a general circle to a general circle in \mathbb{C}_{∞} . (cf theorem ??, chapter I)

Proof

Let $a \in \mathbb{C}$, r > 0 and $\mathscr{C}(a, r)$ the circle of radius r > 0 and centered at a.

$$z \in \mathscr{C}(a,r) \iff |z-a|^2 = r^2 \iff |z|^2 - 2\mathrm{Re}z\bar{a} = r^2 - |a|^2.$$

 $\mathcal{A}(a,r)$.

First ca case r=|a|, which is equivalent to $0\in \mathcal{C}(a,r)$. This condition is equivalent that the pole 0 of f is on the circle $\mathcal{C}(a,r)$. We set $w=\frac{1}{z}$, then $z\in \mathcal{C}(a,r)\iff 1-\mathrm{Re}\bar{w}\bar{a}=0$. Then the image under f of the circle $\mathcal{C}(a,r)$ in \mathbb{C}_{∞} is the straight line of equation $1-\mathrm{Re}\bar{w}\bar{a}=0$.

Second case $r \neq |a|$, then the pole 0 of f is not on the circle

BLEL Mongi

$$z \in \mathscr{C}(a,r) \iff |w|^2 - 2\mathrm{Re}\bar{w}(\frac{\bar{a}}{|a|^2 - r^2}) + \frac{1}{|a|^2 - r^2} = 0$$
, which is the equation of the circle of radius R , with
$$R^2 = \frac{1}{r^2 - |a|^2} - \frac{|a|^2}{(r^2 - |a|^2)^2}, \ R = \frac{r}{|r^2 - |a|^2|} \text{ and centered at } \frac{\bar{a}}{|a|^2 - r^2}$$

We deduce that if the pole of f belongs to the circle $\mathcal{C}(a, r)$, the image of this circle is a straight line and passes through the pole, and if the pole is not on the circle, its image under f is a circle.

By topological considerations of connectedness, we deduce that

- If $0 \in \mathcal{C}(a, r)$, then the image under f of the disc D(a, r) is a half-plane delimited by $f(\mathcal{C}(a, r))$.
- ② If $0 \in D(a,r)$, then the image under f of the disc D(a,r) is the complementary of the disc $D(\frac{\bar{a}}{|a|^2-r^2},\frac{r}{|r^2-|a|^2|})$.
- **3** If 0 belongs to the complementary of the disc D(a, r), then the image under f of this disc is the disc $D(\frac{\bar{a}}{|a|^2 r^2}, \frac{r}{|r^2 |a|^2|})$.

Remark 2:

Since $f \circ f = \operatorname{Id}$, we deduce that the image under f of a straight line passing through the origin 0 is a straight line passing through the origin, the image under f of a circle passing through the origin is a straight line and the image under f of a circle or a straight line which not passing through the origin is a circle.

In what follows, a straight line in \mathbb{C}_{∞} is a straight line in \mathbb{C} which we add the point ∞ . Moreover we define a **general circle** in \mathbb{C}_{∞} , any circle or a straight line.

Theorem

A Möbius transformation transforms a general circle to a general circle in \mathbb{C}_{∞} .

We agree to set that ∞ is the pole of the function f(z) = az, when $a \neq 0$.

Proof

Let f be a Möbius transformation, $f(z) = \frac{az + b}{cz + d}$.

- If c=0, $f(z)=|\frac{a}{d}|e^{\mathrm{i}\theta}z+\frac{b}{d}$, then f is the composite of translation, rotation and a dilation. These mappings preserve the set of general circles in \mathbb{C}_{∞} .
- If $c \neq 0$, then $f(z) = \frac{a}{c} + \frac{bc ad}{c(cz + d)}$. We set $f_1(z) = cz$, $f_2(z) = z + d$, $f_3(z) = \frac{1}{z}$, $f_4(z) = \frac{bc ad}{c}z$ and $f_5(z) = \frac{a}{c}z$. Then $f = f_5 \circ f_4 \circ f_3 \circ f_2 \circ f_1$, which is the composite of a translation, rotation, dilation and an inversion. Every of these mappings preserves the set of general circles in \mathbb{C}_{∞} .

Remark 3:

We deduce that if the pole of the Möbius transformation f belongs to the general circle \mathcal{F} , then the image under f of this general circle is a straight line and if the pole not belongs to \mathcal{F} , then $f(\mathcal{F})$ is a circle.

Examples

1) Let
$$\mathcal{H}^+=\{z\in\mathbb{C};\ \mathrm{Im}z>0\},\ \mathcal{D}=\{z=x+\mathrm{i}y\in\mathbb{C};\ y=0\}$$
 and $f(z)=\frac{1}{1-z}.\ f(\mathcal{D})=\mathcal{D}$ and $f(\mathrm{i})=\frac{1+\mathrm{i}}{2},$ then $f(\mathcal{H}^+)=\mathcal{H}^+.$ 2) Let $Q=\{z=x+\mathrm{i}y\in\mathbb{C};\ x>0\},$
$$\Delta=\{z=x+\mathrm{i}y\in\mathbb{C};\ x=0\}\ \mathrm{and}\ f(z)=\frac{1}{1-z}.$$
 Then the pole 1 of f is not on Δ , then $f(\Delta)$ is a circle. To identify this circle, it suffices to determine the image of three points of Δ . We find that the image of Δ is the circle of radius $\frac{1}{2}$ and centered at $\frac{1}{2}$ and as $f(1)=\infty$, then the image under f of Q is the complementary of the closed disc of radius $\frac{1}{2}$ and centered at $\frac{1}{2}$.

3) Let
$$f(z) = \frac{1}{1-z}$$
, D the unit disc and let \mathscr{C} be the unit circle. Since the pole of f is on \mathscr{C} , then $f(\mathscr{C})$ is a straight line. To determine this line, it suffices of determine the image of two points of \mathscr{C} . $f(i)$ and $f(-i)$ on the straight line of equation $x = \frac{1}{2}$. Since $f(0) = 1$, then $f(D)$ is the half plane $\{x + iy \in \mathbb{C}; x > \frac{1}{2}\}$.

Remarks 4:

- A Möbius transformation different to the identity has at most two fixed points. indeed the equation $z=\frac{az+b}{cz+d}$ for $z\neq\infty$ is equivalent to $cz^2+(d-a)z-b=0$ which has at most two solutions in $\mathbb C$ and exactly two solutions in $\mathbb C_\infty$.
- 2 It results that two Möbius transformations which coincide at three different points in \mathbb{C}_{∞} are equal.

Definition

Let α, β and γ be three distinct elements of \mathbb{C}_{∞} . We define the Möbius transformation called the cross ratio by

Mobiles transformation called the cross ratio by
$$S(z) = (z, \alpha, \beta, \gamma) = \frac{z - \beta}{z - \gamma} \frac{\alpha - \gamma}{\alpha - \beta}, \text{ if } \alpha, \beta, \gamma \in \mathbb{C}.$$

$$(z, \alpha, \beta, \gamma) = S(z) = \frac{z - \beta}{z - \gamma}, \text{ if } \alpha = \infty.$$

$$(z, \alpha, \beta, \gamma) = S(z) = \frac{\alpha - \gamma}{z - \gamma}, \text{ if } \beta = \infty.$$
 and
$$(z, \alpha, \beta, \gamma) = S(z) = \frac{z - \beta}{\alpha - \beta}, \text{ if } \gamma = \infty.$$

and
$$(z, lpha, eta, \gamma) = \mathcal{S}(z) = rac{z - eta}{lpha - eta}$$
 , if $\gamma = \infty$

The transformation S is the only Möbius transformation which verifies $S(\alpha) = 1$, $S(\beta) = 0$ and $S(\gamma) = \infty$.

Remarks 5:

1) The cross ratio is invariant under Möbius transformations. i.e. for any Möbius transformation T we have $(z,\alpha,\beta,\gamma)=(T(z),T(\alpha),T(\beta),T(\gamma))$. Indeed if we denote S_1 the cross ratio defined by $S_1(z)=(z,T(\alpha),T(\beta),T(\gamma))$, then S_1 verifies $S_1(T(\alpha))=1,\ S_1(T(\beta))=0$ and $S_1(T(\gamma))=\infty$. Then $S_1\circ T(\alpha)=1,\ S_1\circ T(\beta)=0$ and $S_1\circ T(\gamma)=\infty$, thus $S_1\circ T=S$.

- 2) For all $z_1, z_2, z_3 \in \mathbb{C}_{\infty}$ different and $w_1, w_2, w_3 \in \mathbb{C}_{\infty}$ different, there exists one and only one Möbius transformation which transforms z_1 to w_1 , z_2 to w_2 and z_3 to w_3 . Indeed let $S_1(z) = (z, z_1, z_2, z_3)$ and $S_2(z) = (z, w_1, w_2, w_3)$. The Möbius transformation $T = S_2^{-1} \circ S_1$ fulfills the desired property.
- 3) A Möbius transformation is a conformal mapping. Thus it preserves the angles.

Lemma

The cross ratio $[z_1, z_2, z_3, z_4]$ is real if and only if all z_1, z_2, z_3, z_4 lie in the same general circle. Further, if $[z_1, z_2, z_3, z_4] < 0$, then the points z_1, z_2, z_3, z_4 have to appear in this general circle in the following order: z_1, z_2, z_3, z_4 .

Proof

Let \mathscr{C} be the unique general circle passing through z_2 , z_3 and z_4 and f the Möbius transformation sending z_2 to 0, z_3 to 1 and z_4 to ∞ . Then $f(\mathscr{C})$ is the real axis. Now $z_1 \in \mathscr{C}$ if and only if $f(z_1) \in f(\mathscr{C}) = \mathbb{R}$, which proves the first part of the lemma. If $f(z_1) < 0$, then $f(z_j)$ appear in the line in the following order $f(z_1) < f(z_2) < f(z_3) < f(z_4)$, and hence the same is true about the inverse image.

Theorem (Ptolemy's Theorem)

Given four points A, B, C and D on the plane. The following holds

$$\overline{AB} \ \overline{CD} + \overline{BC} \ \overline{AD} \ge \overline{AC} \ \overline{BD}.$$

Equality holds if and only if A, B, C, D lie in a circle and appear in alphabetical order (clockwise or counterclockwise).

Proof

Let z_1, z_2, z_3 and z_4 be the complex numbers representing A, B, C and D, respectively. We can easily check the identity

$$(z_1-z_2)(z_3-z_4)+(z_1-z_4)(z_2-z_3)=(z_1-z_3)(z_2-z_4).$$

Hence, using the triangle inequality, we have:

$$|z_1-z_2||z_3-z_4|+|z_1-z_4||z_2-z_3| \ge |z_1-z_3||z_2-z_4|,$$

which proves the first part of the theorem. So, the equality holds when both vectors involved have the same direction and orientation, i.e, we have equality if and only if $\frac{(z_1-z_2)(z_3-z_4)}{(z_1-z_4)(z_2-z_3)} \in \mathbb{R}^+.$ Or equivalently, if the cross ratio $[z_1,z_2,z_3,z_4] \text{ is real and negative.}$ The result then follows by lemma 3.5.

Definition

We say that two points z_1 and z_2 are symmetric with respect to the circle $\mathcal{L}(a,r)$ if a,z_1 and z_2 are on the same half-straight line outgrowing of a and $|z_1 - a| |a - z_2| = r^2$.

Remarks 6:

- 1) We can easily prove that in this definition each straight line or circle passing through z_1 and z_2 intersects $\mathcal{L}(a, r)$ orthogonally.
- 2) If $z\in\mathbb{C}$, then the symmetry of z with respect to the circle

$$\mathcal{C}(a,r)$$
 is $z'=a+\frac{r^2}{\bar{z}-\bar{a}}$. If we denote $S_{\mathcal{C}}(z)=a+\frac{r^2}{\bar{z}-\bar{a}}$ which designs the image of the symmetric of z with respect to the circle

$$\mathcal{C}(a,r)$$
, then the mappings $T(z)=\mathcal{S}(z)$ and $H(z)=S(\bar{z})$ are Möbius transformations.

Let \mathscr{D} be a straight line of equation $z=\alpha+x\mathrm{e}^{\mathrm{i}\theta}$ ($x\in\mathbb{R},\ \alpha$ and θ are fixed in \mathbb{R} .) An immediate computation shows that the affix of the symmetric of z with respect to the straight line \mathscr{D} is z'=S (z) = $\alpha+\mathrm{e}^{2\mathrm{i}\theta}(\bar{z}-\alpha)$. Then the mappings $T(z)=\overline{S}$ (z) and H(z)=S (z) are also Möbius transformations.

Theorem

Every Möbius transformation transforms two symmetric points with respect to a general circle to two points symmetric with respect to the general circle image.

Proof

Let $\mathcal F$ be a general circle and f a Möbius transformation. We denote by S(z) the symmetric of z with respect to $\mathcal F$, $H=f(\mathcal F)$ and T(z) the symmetric of z with respect to H. To prove the theorem, it suffices to prove that $T\circ f(z)=f\circ S(z)$. From the previous remark $\overline{T\circ f}$ and $\overline{f\circ S}$ are Möbius transformations. Then it suffices to prove that $T\circ f$ and $f\circ S$ coincide on three different points. It is obvious that these Möbius transformations coincide on $\mathcal F$.

1) Characterization of Möbius transformations which transform the unit disc on itself.

Let h be such Möbius transformation and $a \in D$ such that h(a) = 0, thus $h(\frac{1}{\bar{a}}) = \infty$. $(\frac{1}{\bar{a}} \text{ is the symmetric of } a \text{ with respect to}$ the unit circle. If a = 0, $\frac{1}{\bar{a}} = \infty$). Then that $h(z) = k \frac{a - z}{1 - \bar{a}z}$. Moreover h transforms D on itself, then $k = e^{\mathrm{i}\theta}$, with $\theta \in \mathbb{R}$.

2) Characterization of Möbius Transformations Which Transform the Upper Half Plane on the Unit Disc Let \mathcal{H}^+ be the upper half plane and h a Möbius transformation which transforms \mathcal{H}^+ on the unit disc D. There exists $\alpha \in \mathcal{H}^+$ such that $h(\alpha) = 0$, then $h(\bar{\alpha}) = \infty$ and $h(z) = \mathrm{e}^{\mathrm{i}\theta} \frac{z - \alpha}{z - \bar{\alpha}}$.

3) Characterization of Conformal Mappings Which Transform a Crescent on a Half Plane

We consider the open subset Ω defined by the region of \mathbb{C} between two arc of circles \mathscr{C}_1 and \mathscr{C}_2 . (cf figure ??). Ω is a simply connected domain. The mapping $f:\Omega\longrightarrow\mathbb{C}$ defined by $f(z) = \frac{z-a}{z-b}$ transforms the domain Ω onto the domain Ω' defined by the sector between two half-lines L_1 and L_2 outgrowing of 0 and the angle between L_1 and L_2 is equal to α , where α is the angle between the circles \mathscr{C} and \mathscr{C} at a. (L₁ is the image of the arc of circle \mathcal{C}_1 under f and L_2 is the image of the arc of circle \mathscr{C} under f). The mapping $z \mapsto z^{\frac{\pi}{\alpha}}$ transforms the domain Ω' on a half plane.

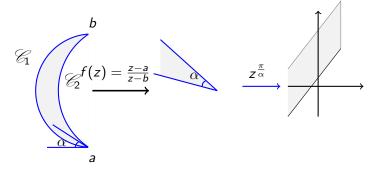


figure 1:

Exercise 1:

Let
$$\Omega = \{ z \in \mathbb{C}; \ |z - \frac{i}{2}| < 1, \ |z + \frac{i}{2}| < 1 \}.$$

1 Prove that Ω is simple connected.

② Let
$$\mathcal{C}_1 = \{z \in \mathbb{C}; \ |z - \frac{\mathrm{i}}{2}| = 1\}, \ \mathcal{C}_2 = \{z \in \mathbb{C}; \ |z + \frac{\mathrm{i}}{2}| = 1\}, \ A = -\sqrt{3}/2 \text{ and } B = \sqrt{3}/2.$$
 We consider the function
$$f(z) = \frac{z + \sqrt{3}/2}{z - \sqrt{3}/2}.$$

- a) Give the angle between C_1 and C_2 at A.
- b) Find $f(\Omega)$ and deduce a conformal mapping from Ω onto the upper half plane.

Solution

1 Ω is convex, then it is simple connected.

a) Let
$$\gamma_1(t)=\frac{\mathrm{i}}{2}+\mathrm{e}^{\mathrm{i}t}$$
 and $\gamma_2(t)=-\frac{\mathrm{i}}{2}+\mathrm{e}^{\mathrm{i}t}$ for $t\in[0,2\pi]$. $\gamma_1(t)=-\sqrt{3}/2\iff t=\frac{7\pi}{6}$ and $\gamma_2(t)=-\sqrt{3}/2\iff t=\frac{5\pi}{6}$, then since $\gamma_1'(t)=\mathrm{i}\mathrm{e}^{\mathrm{i}t}$ and $\gamma_2'(t)=\mathrm{i}\mathrm{e}^{\mathrm{i}t}$, the angle between \mathcal{C}_1 and \mathcal{C}_2 at A is $\frac{\pi}{3}$. b) $f(-\frac{\mathrm{i}}{2})=\mathrm{e}^{\frac{2\mathrm{i}\pi}{3}}$ and $f(\frac{\mathrm{i}}{2})=\mathrm{e}^{\frac{4\mathrm{i}\pi}{3}}$ and $f(0)=-1$, then $f(\Omega)=\{z=r\mathrm{e}^{\mathrm{i}\theta};\ \frac{2\pi}{3}<\theta<\frac{4\pi}{3},\ r>0\}$. If $z=r\mathrm{e}^{\mathrm{i}\theta}$ with $\frac{2\pi}{3}<\theta<\frac{4\pi}{3},\ z^{\frac{3}{2}}=r^{\frac{3}{2}}\mathrm{e}^{\mathrm{i}\frac{3}{2}\theta}$ with $\pi<\frac{3}{2}\theta<2\pi$. The mapping $h(z)=\frac{z+\mathrm{i}}{z-\mathrm{i}}$ is a conformal mapping from the half plane $\{z=r\mathrm{e}^{\mathrm{i}\theta};\ \pi<\theta<2\pi\}$ is the unit disc. Then $h\circ g\circ f$ is a conformal mapping from Ω to the unit disc, where $g(z)=z^{\frac{3}{2}}$.

4) Characterization of Conformal Mappings Which Transform a Domain Delimited by a Semi Circle and a Line onto a Half Plane

If Ω is the domain of $\mathbb C$ delimited by a semi circle of center the origin and radius 1 and contained in the upper half plane. (cf figure 2). The Möbius transformation $f(z)=\frac{z-1}{z+1}$ transforms Ω onto the quarter of the plane $\{z\in\mathbb C;\ x<0\ \mathrm{and}\ y>0\}$ and the mapping $g(z)=-z^2$ transform this quarter of the plane onto the upper half plane.

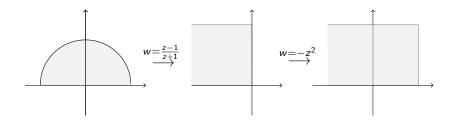


figure 2:

Theorem

Let $\Omega \neq \mathbb{C}$ be a simply connected domain and let $a \in \Omega$. There exists a unique conformal mapping f from Ω onto D such that f(a) = 0 and f'(a) > 0.

Proof

Uniqueness Let f and g be to such transformations. Bt schwarz lemma, the function $g \circ f^{-1}$ is a conformal mapping from the unit disc onto itself and $g \circ f^{-1}(0) = 0$. Then $g \circ f^{-1}$ is linear. Moreover $(g \circ f^{-1})'(0) > 0$, thus $g \circ f^{-1} = Id \Rightarrow g = f$.

Existence Let $\mathscr{F} = \{ f \in \mathcal{H}(\Omega) \text{ injective}; \ f(a) = 0, f'(a) > 0 \}$ $0, |f(z)| < 1 \ \forall \ z \in \Omega$. The family \mathcal{F} is normal and let proving that \mathscr{F} is not empty. Let $\alpha \notin \Omega$ and the function $g(z) = (z - \alpha)^{1/2}$. (Since Ω is simple connected and $z - a \neq 0$ for all $z \in \Omega$, then g is well defined on Ω). The function g is holomorphic on Ω , injective and $g(z_1) \neq -g(z_2)$, $\forall z_1 \neq z_2$ in Ω . Then by open mapping theorem, there exists $\varepsilon > 0$ such that the disc $\{w \in \mathbb{C}: |w - g(a)| < \varepsilon\} \subset g(\Omega)$ and $\{w \in \mathbb{C} : |w + g(a)| < \varepsilon\} \cap g(\Omega) = \emptyset$ (because $g(z_1) \neq -g(z_2) \ \forall \ z_1, z_2 \in \Omega$). Let ψ the Möbius transformation which transforms $\{w \in \mathbb{C}: |w + g(a)| > \varepsilon\}$ in the unit disc with $\psi(g(a))=0$ and $(\psi\circ g)'(a)>0$.

$$\psi(z) = e^{i\theta} \frac{\varepsilon(g(a) - z)}{2(z + g(a))\overline{g(a)} - \varepsilon^2},$$

 θ is such that $(\psi \circ g)'(a) > 0$. Then $\psi \circ g \in \mathcal{F}$, indeed ψ is

injective, g is injective, thus $\psi \circ g$ is injective. $\psi \circ g(a) = 0$, $|\psi \circ g(z)| < 1$ by construction. Let $M = \sup\{f'(a); \ f \in \mathscr{F}\} \leq +\infty$. There exists a sequence $(f_n)_n \in \mathscr{F}$ such that $\lim_{n \to +\infty} f'_n(a) = M$. Since \mathscr{F} is a normal family, we can extract from the sequence $(f_n)_n$ a convergent subsequence, set f its limit for the topology of $\mathcal{H}(\Omega)$. Then f is injective or constant. The function f is not constant because f'(a) = M > 0, thus $M < +\infty$ and $f \in \mathscr{F}$.

If f is not surjective, there exists $w \in D$ such that $f(z) \neq w, \ \forall \ z \in \Omega.$

We define the holomorphic functions F and G by:

$$F(z) = \left(\frac{f(z) - w}{1 - \bar{w}f(z)}\right)^{1/2} \text{ and } G(z) = e^{i\theta} \frac{F(z) - F(a)}{1 - \overline{F(a)}F(z)}, \text{ with}$$

$$e^{i\theta} \frac{F'(a)}{F'(a)} = F(a) = \frac{F(a)}{1 - \overline{F(a)}F(z)}, \text{ with}$$

$$\mathrm{e}^{\mathrm{i} heta}=rac{F'(a)}{|F'(a)|}.$$
 F is injective, $|F(z)|<1,\ orall z\in\Omega,\ G\in\widetilde{\mathscr{F}}$ and

$$e^{\mathrm{i}\theta} = \frac{\overline{F'(a)}}{|F'(a)|}. \ F \ \text{is injective,} \ |F(z)| < 1, \ \forall z \in \Omega, \ G \in \mathscr{F} \text{and}$$

$$G'(a) = \frac{|F'(a)|}{1 - |F(a)|^2} = \frac{1 + |w|}{2\sqrt{w}} f'(a). \ \text{Thus } g'(a) > f'(a), \ \text{which is}$$

absurd, then f is surjective and f realizes the conformal mapping from Ω onto the unit disc.

Theorem (Caracthéodory's Extension Theorem)

Let Ω be a bounded simply connected domain such that the boundary $\partial\Omega$ is a Jordan curve C and let $f:\Omega\longrightarrow D$ be a conformal mapping from Ω onto D. Then f can be extended to an homeomorphisms from $\overline{\Omega}$ onto \overline{D} .