Harmonic Functions of two Variables

BLEL Mongi

Department of Mathematics King Saud University

February 14, 2023

Definition

A mapping $U: \Omega \longrightarrow \mathbb{R}$ defined on an open subset Ω of \mathbb{C} twice continuously differentiable (U is of class C^2) is called harmonic if $\Delta U = 0$, known as Laplace equation, with $\Delta U = \frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2}$. (Δ is called the Laplace operator).

Examples

1
$$U(x, y) = x^2 - y^2$$
 is harmonic.

② If f is holomorphic on Ω , then $\operatorname{Re} f$ and $\operatorname{Im} f$ are harmonic on Ω .

We intend to show that in general any real harmonic function is locally the real part of a holomorphic function.

Theorem

If Ω is a simply connected domain of \mathbb{C} and $U: \Omega \longrightarrow \mathbb{R}$ harmonic on Ω , there exists a holomorphic function f on Ω such that $U = \operatorname{Re} f$ on Ω .

Proof

The mapping $g(z) = \frac{\partial U}{\partial x}(x, y) - i\frac{\partial U}{\partial y}(x, y)$ is holomorphic on Ω , with z = x + iy. Since Ω is simply connected, g has a primitive in Ω . Let G be any primitive of g. G is holomorphic and

$$g(z) = \frac{\partial U}{\partial x}(x, y) - i\frac{\partial U}{\partial y}(x, y) = \frac{\partial \operatorname{Re} G}{\partial x}(x, y) + i\frac{\partial \operatorname{Im} G}{\partial x}(x, y)$$
$$= -i\frac{\partial \operatorname{Re} G}{\partial y}(x, y) + \frac{\partial \operatorname{Im} G}{\partial y}(x, y).$$

Thus

$$\left(\frac{\partial U}{\partial x} = \frac{\partial \mathrm{Re}G}{\partial x}\right)$$

Corollary

Any harmonic function is locally the real part of a holomorphic function.

Corollary

Any harmonic function is infinitely continuously differentiable.

Corollary

If $U \colon D(0, R) \longrightarrow \mathbb{R}$ is harmonic, then for all $0 \le r < R$

$$U(re^{\mathrm{i} heta}) = \sum_{-\infty}^{+\infty} a_n r^{|n|} e^{\mathrm{i}n heta},$$

Proof

Let f be a holomorphic function such that $U = \operatorname{Re} f$, $f(z) = \sum_{n=1}^{+\infty} b_n z^n$, then

$$U(re^{\mathrm{i} heta}) = \mathrm{Re}b_0 + rac{1}{2}\sum_{n=1}^{+\infty}b_nr^ne^{\mathrm{i}n heta} + rac{1}{2}\sum_{n=1}^{+\infty}\overline{b_n}r^ne^{-\mathrm{i}n heta}.$$

We set $a_0 = \operatorname{Re} b_0$ and for $n \ge 1$, $a_n = \frac{1}{2}b_n$ and for $n \le -1$, $a_n = \frac{1}{2}\overline{b_{-n}}$. We remark that

$$a_n r^{|n|} = rac{1}{2\pi} \int_0^{2\pi} U(r e^{\mathrm{i} heta}) e^{-\mathrm{i} n heta} \; d heta.$$

We can prove the same result using Fourier series of functions The mapping $\theta \mapsto U(re^{i\theta})$ is infinitely continuously differentiable (C^{∞}) and 2π -periodic, thus $U(re^{i\theta}) = \sum_{n=-\infty}^{+\infty} C_n e^{in\theta}$, for all r < R. The Fourier's coefficients C_n are given by $C_n = \frac{1}{2\pi} \int_{0}^{2\pi} U(re^{i\theta})e^{-in\theta} d\theta = a_n r^n$.

Corollary (Liouville's Theorem)

Any bounded harmonic function on $\mathbb C$ is constant.

Proof

Let U be a harmonic function bounded by M on \mathbb{C} . For all r > 0, we have

$$U(re^{\mathrm{i} heta}) = \sum_{-\infty}^{+\infty} a_n r^{|n|} e^{\mathrm{i}n heta}.$$
 $a_n r^{|n|} = rac{1}{2\pi} \int_0^{2\pi} U(re^{\mathrm{i} heta}) e^{-\mathrm{i}n heta} \ d heta.$

Then that $|a_n r^{|n|}| \le M$ and $a_n = 0$ if $n \ne 0$.

Corollary

Any harmonic function on $\mathbb{C},$ bounded above or bounded below is constant.

Proof

If we replace U by -U, we can suppose that U is bounded above. Since \mathbb{C} is a simply connected domain, there exists a holomorphic function f on \mathbb{C} such that $U = \operatorname{Re} f$. Without loss of generality, we can suppose that U is non positive. Thus $|e^f| = e^{\operatorname{Re} f} = e^U \leq 1$. By Liouville's theorem e^f is constant, then f and U are constant. \Box

Theorem

Let U be a harmonic function on a domain Ω . If $\Omega' \neq \emptyset$ is a subdomain of Ω and U = 0 on Ω' , then U = 0 on Ω .

Proof

Suppose first that Ω' is a disc, f analytic on Ω' and $U = \operatorname{Re} f$. In view of the Cauchy-Riemann equations, f is constant on Ω^* , and therefore f is constant on Ω , and hence U = 0. For arbitrary domain, we consider the subset $A = \{z \in \Omega, U = 0 \text{ in a neighborhood of } z\}$. A is open and closed in Ω , then it is equal to Ω .

Remark 1 :

Let Ω_1 , and Ω_2 be two domains such that $\Omega_1 \cap \Omega_2 \neq \emptyset$. If U_1, U_2 are harmonic functions on Ω_1 respectively on U_2 and $U_1 = U_2$ on $\Omega_1 \cap \Omega_2$. These conditions determine a unique harmonic function on $\Omega_1 \cup \Omega_2$ uniquely. Indeed, if V_2 is another harmonic function satisfying the same conditions, then $V_2 - U_2 = 0$ on $\Omega_1 \cap \Omega_2$. In view of the previous theorem, $V_2 = U_2$ on Ω_2 .

Generalities on Harmonic Functions
Extension of Harmonic Functions
Mean Property for Harmonic Functions
Maximum Principle
Poisson Formula and the Dirichlet Problem
Topology on The Space of Harmonic Functions
Rado's Theorem
Harnack's Inequality
The Reflection Principle of Harmonic Functions

The function U_2 is called the harmonic continuation (or extension) of U_1 , into the domain Ω_2 .

Proposition

Let Ω be an open subset of \mathbb{C} and U a harmonic function on $\Omega \setminus \{a\}$, bounded above in a neighborhood of a, $(a \in \Omega)$. Then there exists a constant $c \ge 0$ such that $U - c \ln |z - a|$ can be extended on Ω to a harmonic function.

Generalities on Harmonic Functions
Extension of Harmonic Functions
Mean Property for Harmonic Functions
Maximum Principle
Poisson Formula and the Dirichlet Problem
Topology on The Space of Harmonic Functions
Rado's Theorem
Harnack's Inequality
The Reflection Principle of Harmonic Functions

Proof

We can suppose that a = 0 and we consider R > 0 such that $D(0, R) \subset \Omega$. We set

$$U_x = \frac{\partial U}{\partial x}, \quad U_y = \frac{\partial U}{\partial y}, \quad U_r = \frac{\partial U}{\partial r} \text{ and } U_\theta = \frac{\partial U}{\partial \theta},$$

with $z = x + iy = r \cos \theta + ir \sin \theta$. We have

 $U_r = U_x \cos \theta + U_y \sin \theta$ and $U_\theta = -rU_x \sin \theta + rU_y \cos \theta$.

The mapping $rU_r - iU_\theta = (x + iy)(U_x - iU_y) = zW(z)$ is holomorphic on a neighborhood of 0 except at 0. Let $zW(z) = \sum_{-\infty}^{+\infty} C'_n z^n$ its Laurent expansion. If $C'_n = a'_n + ib'_n$, we have

$$rU_r = \sum_{-\infty}^{+\infty} (a'_n \cos n\theta - b'_n \sin n\theta)r^n, \quad U_\theta = -\sum_{-\infty}^{+\infty} (b'_n \cos n\theta + a'_n \sin n\theta)r^n.$$

For $0 < r_0 < R$,

$$U(re^{i\theta}) - U(r_0e^{i\theta}) = a'_0 \ln \frac{r}{r_0} + \sum_{n=-\infty, n\neq 0}^{+\infty} (a'_n \cos n\theta - b'_n \sin n\theta)(\frac{r^n - r_0^n}{n}).$$

$$U(r_0 e^{i\theta}) - U(r_0) = -b'_0 \theta + \sum_{n=-\infty, n\neq 0}^{+\infty} (a'_n(\cos n\theta - 1) - b'_n \sin n\theta) \frac{r_0^n}{n}.$$

Since $U(re^{i\theta})$ is 2π periodic, then $b_0' = 0$. Thus

$$U(re^{i\theta}) - U(r_0) = C + a'_0 \ln \frac{r}{r_0} + \sum_{n=-\infty, n\neq 0}^{+\infty} (a'_n \cos n\theta - b'_n \sin n\theta) \frac{r^n}{n},$$

with
$$C = -\sum_{n=-\infty, n \neq 0}^{+\infty} a'_n \frac{r_0^n}{n}$$
. Then
 $U(re^{i\theta}) = k \ln r + a_0 + \sum_{\substack{n=-\infty, n \neq 0}}^{+\infty} (a_n \cos n\theta - b_n \sin n\theta) r^n$,
BLEL Mongi

 $k \ln r + a_0 = \frac{1}{2\pi} \int_0^{2\pi} U(e^{i\theta}) d\theta$. Since U is bounded above on a neighborhood of 0, then $k \ge 0$ and $a_n = 0$ and $b_n = 0$, for all n < 0. Thus $U - k \ln r$ can be extended to a harmonic function on a neighborhood of 0.

Corollary

Let Ω be an open subset of \mathbb{C} and let $a \in \Omega$. Then any harmonic function U on $\Omega \setminus \{a\}$ bounded on any neighborhood of a can be extended on Ω to a harmonic function.

Proof

If a = 0, it results from the previous proposition,

$$U(re^{i\theta}) = k \ln r + a_0 + \sum_{n=-\infty, n\neq 0}^{+\infty} (a_n \cos n\theta + b_n \sin n\theta)r^n,$$

Since U is bounded on a neighborhood of 0, then k = 0, $a_n = 0$ and $b_n = 0$, for n < 0. Then U can be extended to a harmonic BLEL Morgin Harmonic Functions of two Variables

Theorem

Let $U: \Omega \longrightarrow \mathbb{R}$ be a harmonic function. We assume that $\Omega \supset \overline{D(z_0, R)}$, then

$$U(z_0) = rac{1}{2\pi} \int_0^{2\pi} U(z_0 + r e^{\mathrm{i} heta}) \; d heta, \quad orall r < R,$$

and

$$U(z_0) = \frac{1}{\pi R^2} \int \int_{D(z_0,R)} U(x,y) \, dx dy.$$

The number $\frac{1}{2\pi} \int_0^{2\pi} U(z_0 + re^{i\theta}) d\theta$ is called the mean of f on the circle of center z_0 and radius r and the number $\frac{1}{\pi R^2} \int \int_{D(z_0,R)} U(x,y) dxdy$ is called the mean of f on the disc of radius R and centered at z_0 .

Generalities on Harmonic Functions
Extension of Harmonic Functions
Mean Property for Harmonic Functions
Maximum Principle
Poisson Formula and the Dirichlet Problem
Topology on The Space of Harmonic Functions
Rado's Theorem
Harnack's Inequality
The Reflection Principle of Harmonic Functions

Proof

Let $\varepsilon > 0$ such that $D(z_0, R + \varepsilon) \subset \Omega$. There exists $f \in \mathcal{H}(D(z_0, R + \varepsilon))$ such that $U = \operatorname{Re} f$ on this disc. Since

$$f(z_0)=\frac{1}{2\pi}\int_0^{2\pi}f(z_0+re^{\mathrm{i}\theta})\ d\theta,$$

then

$$U(z_0)=rac{1}{2\pi}\int_0^{2\pi}U(z_0+re^{\mathrm{i} heta})\;d heta.$$

Moreover

$$\int_{0}^{R} U(z_0) r \, dr = U(z_0) \frac{R^2}{2} = \frac{1}{2\pi} \int_{0}^{R} \int_{0}^{2\pi} U(z_0 + re^{i\theta}) \, rdr \, d\theta.$$

Thus

$$U(z_0) = \frac{1}{\pi R^2} \int \int_{D(z_0,R)} U(x,y) \, dx \, dy.$$

Corollary (Liouville's Theorem)

Any non negative harmonic function on $\mathbb C$ is constant.

This is an other proof of Corollary 1.7. This result is generalized by Picard for harmonic function on \mathbb{R}^n , with $n \ge 3$. We yield a proof on \mathbb{R}^2 , which is the same in \mathbb{R}^n , with $n \ge 3$.

Let $a, b \in \mathbb{C}$ and r = |a - b|. Then by the mean property

$$\pi R^2 U(a) = \int_{D(a,R)} U(y) dy \leq \int_{D(b,R+r)} U(y) dy = \pi (R+r)^2 U(b).$$

Then $U(a) \leq U(b)$. (It is enough to divide by πR^2 and tends R to $+\infty$.) Thus U(a) = U(b).

Corollary

Any non negative harmonic function on \mathbb{C}^* is constant.

Proof

If U is a non negative harmonic function on \mathbb{C}^* , then the function $z \mapsto U(e^z)$ is a non negative harmonic on \mathbb{C} , thus it is constant, which shows that U is constant.

Theorem (Maximum principle)

Let Ω be a bounded domain and U a continuous function on $\overline{\Omega}$ and harmonic on Ω . Then $\sup_{\overline{\Omega}} U = \sup_{\partial\Omega} U$, $\inf_{\overline{\Omega}} U = \inf_{\partial\Omega} U$ and if the maximum or the minimum of U is reached in Ω , then U is constant.

Proof

In considering -U which is harmonic, it suffices to prove the result for the maximum. Let $M = \sup_{\overline{\Omega}} U$ and $A = \{z \in \Omega; U(z) = M\}$.

- If $A = \emptyset$ the result is trivial.
- If $A \neq \emptyset$ and $z_0 \in \Omega$ such that $U(z_0) = M$, then there exists R > 0 such that $\overline{D(z_0, R)} \subset \Omega$.

Then
$$\int_{0}^{2\pi} \left(U(z_0) - U(z_0 + re^{i\theta}) \right) d\theta = 0 \text{ and}$$
$$\left(U(z_0) - U(z_0 + re^{i\theta}) \right) \ge 0. \text{ Thus } U(z_0) = U(z_0 + re^{i\theta}) \text{ for all}$$
$$r \le R \text{ and } \theta \in [0, 2\pi]. \text{ Then } U \text{ is constant on any disc } D(z_0, R).$$
It results that $A = \emptyset$ or $A = \Omega$.

(We remarked in chapter that any function which verifies the Mean Property it fulfills the maximum principle.)

Corollary

Let U and V be two harmonic functions on a bounded domain Ω . We assume that U and V are continuous on $\overline{\Omega}$ and $U_{\mid \partial \Omega} = V_{\mid \partial \Omega}$, then $U \equiv V$ on Ω .

Proof

U - V and V - U are harmonic on Ω , $\sup_{\partial \Omega} (U - V) = \inf_{\partial \Omega} (U - V) = 0$, thus $U \equiv V$.

Corollary (Maximum Principle)

Let $\Omega \neq \mathbb{C}$ be a domain non necessarily bounded of \mathbb{C} , and let U be a harmonic function on Ω . We assume that for any sequence $(a_n)_n$ of Ω which converges to a point of $\partial\Omega$ or tends to ∞ , $\lim_{n\to+\infty} U(a_n) \leq M$, then $U \leq M$ on Ω .

(We say that the sequence $(a_n)_n$ of Ω tends to ∞ , if $\lim_{n \to +\infty} |a_n| = +\infty.)$ Proof

Let $M' = \sup_{z \in \Omega} U(z)$. There exists a sequence $(a_n)_n$ of Ω such that $\lim_{n \to +\infty} U(a_n) = M'$. If the sequence $(a_n)_n$ has a limit point b in Ω , then there exists a subsequence $(a_{n_k})_k$ which converges to b and $\lim_{k \to +\infty} U(a_{n_k}) = M'$. By maximum principle, U is constant on Ω .

If the sequence $(a_n)_n$ has no limit point in Ω , then there exists a subsequence $(a_{n_k})_k$ which converges to a point in $\partial\Omega$ or tends to ∞ . Then $M' \leq M$. Then $M' \leq M$.

Corollary

Any real harmonic function can not have an isolate zero.

Proof

Let *a* be a zero of a harmonic function *U* on a domain Ω . We assume that $U \not\equiv 0$ on Ω . For all r > 0 such that $\overline{D(a, r)} \subset \Omega$, by mean value property, the function *U* has a zero on C(a, r).

Let Ω be a bounded open subset and ψ a continuous function on $\partial\Omega$. The Dirichlet problem on Ω with the given function ψ on $\partial\Omega$, consists to find a continuous function $U: \overline{\Omega} \longrightarrow \mathbb{R}$ and harmonic on Ω such that $U_{\mid \partial\Omega} = \psi$. If there exists a such function, it is unique.

Poisson Kernel

Let $0 \leq r < 1$. The Poisson kernel is the mapping defined on \mathbb{R} by

$$P_r(\theta) = \frac{1-r^2}{1-2r\cos(\theta)+r^2}.$$

Properties

1
$$P_r(\theta - t) = \frac{1 - r^2}{1 - 2r\cos(\theta - t) + r^2} = \operatorname{Re} \frac{e^{it} + re^{i\theta}}{e^{it} - re^{i\theta}}.$$
2 $P_r \ge 0.$
3 $P_r(\theta) = \sum_{-\infty}^{\infty} r^{|n|} e^{in\theta}.$
4 $\frac{1}{2\pi} \int_{0}^{2\pi} P_r(\theta) \ d\theta = 1.$
5 For all $0 < \delta < \pi$, $\sup_{\delta \le \theta \le 2\pi - \delta} P_r(\theta) \ \xrightarrow{r \to 1} 0.$
6 $\frac{1 - r^2}{1 - r^2} \xrightarrow{r \to 0.}$
7 $\frac{1 - r^2}{1 - r^2} \xrightarrow{r \to 0.}$

Theorem (Poisson Formula)

Let f be a holomorphic function on a neighborhood of \overline{D} , then for all |z| < 1,

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} \operatorname{Re} \frac{e^{it} + z}{e^{it} - z} f(e^{it}) dt.$$
(1)

$$U(re^{i\theta}) = rac{1}{2\pi} \int_0^{2\pi} P_r(\theta - t) U(e^{it}) dt$$
, with $U = \operatorname{Re} f$.

Proof

The formula (1) for z = 0 is the Mean Property. For $z \neq 0$, we apply the Cauchy's formula to the function f, we find

$$f(z)=\frac{1}{2\mathrm{i}\pi}\int_{\gamma}\frac{f(w)}{w-z}\,\,dw,$$

with $\gamma(t) = e^{it}$, $t \in [0, 2\pi]$. If |z'| > 1, $\frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{w - z'} dw = 0$. In particular for $z' = \frac{1}{\overline{z}}$, with $z = re^{i\theta}$, we have

$$f(re^{i\theta}) = \frac{1}{2\pi} \int_0^{2\pi} \left(\frac{1}{e^{it} - re^{i\theta}} - \frac{1}{e^{it} - \frac{e^{i\theta}}{r}}\right) f(e^{it}) dt.$$
BLEL Mongi Harmonic Functions of two Variables

$$\frac{1}{e^{\mathrm{i}t}-re^{\mathrm{i}\theta}}-\frac{1}{e^{\mathrm{i}t}-\frac{e^{\mathrm{i}\theta}}{r}}=P_r(\theta-t).$$

Theorem

Let $\psi : \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function, 2π -periodic, then there exists a function $U : \overline{D(0,R)} \longrightarrow \mathbb{R}$ continuous on $\overline{D(0,R)}$ and harmonic on D(0,R) such that $U(Re^{it}) = \psi(t)$ and for all $0 \le r < R$

$$U(re^{i\theta}) = rac{1}{2\pi} \int_{0}^{2\pi} P_{rac{r}{R}}(\theta-t)\psi(t) \ dt = rac{1}{2\pi} \int_{-\pi}^{\pi} P_{rac{r}{R}}(t)\psi(\theta-t) \ dt.$$

Proof

Let $z_0 = Re^{i\theta_0}$.

$$U(re^{i\theta}) - \psi(\theta_0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_{\frac{t}{R}}(t)(\psi(\theta - t) - \psi(\theta_0)) dt.$$

By the continuity of ψ , for $\varepsilon > 0$, $\exists \eta > 0$ be such that
 $|\alpha - \theta_0| < \eta \Rightarrow |\psi(\alpha) - \psi(\theta_0)| \le \varepsilon.$ For $\theta \in]\theta_0 - \frac{\eta}{2}, \theta_0 + \frac{\eta}{2}[$ and $|t| < \frac{\eta}{2}$, then $|\theta - t - \theta_0| < \eta.$

$$\int_{-\pi}^{\pi} P_{\overline{R}}(t)(\psi(\theta-t)-\psi(\theta_0)) dt = \int_{|t|<\frac{\eta}{2}} P_{\overline{R}}(t)(\psi(\theta-t)-\psi(\theta_0)) dt$$
$$+ \int_{\frac{\eta}{2}<|t|<\pi} P_{\overline{R}}(t)(\psi(\theta-t)-\psi(\theta_0))$$

We have

$$rac{1}{2\pi} |\int_{|t| < rac{\eta}{2}} {\sf P}_{rac{r}{R}}(t) (\psi(heta-t)-\psi(heta_0)) \,\, dt| \leq arepsilon$$

and

$$\frac{1}{2\pi} \left| \int_{\frac{\eta}{2} < |t| < \pi} \mathsf{P}_{\frac{r}{R}}(t) (\psi(\theta - t) - \psi(\theta_0)) \, dt \right| \leq 2M \frac{1 - (\frac{r}{R})^2}{\sin^2 \frac{\eta}{2}} \leq \varepsilon.$$

For $r \ge r_0$, with r_0 close to R and $M = \sup_{t \in \mathbb{R}} |\psi(t)|$.

Thus $\forall \varepsilon > 0$, $\exists \eta > 0$ and $0 < r_0 \le R$ such that if $|\theta - \theta_0| < \frac{\eta}{2}$ and $r \ge r_0$, we have $|U(re^{i\theta}) - \psi(\theta_0)| \le 2\varepsilon$. Thus U is continuous on $\overline{D(0, R)}$ and $U(Re^{i\theta}) = \psi(\theta)$. U is harmonic on D(0, R)because U is the real part of a holomorphic function.

Remarks 2 :

- The solution of the Dirichlet problem is unique (by the the maximum principle).
- If ψ is a locally integrable function on R and 2π-periodic, then for all R > 0, the mapping U defined on D(0, R) by

$$U(re^{\mathrm{i}\theta}) = \frac{1}{2\pi} \int_0^{2\pi} P_{\frac{r}{R}}(\theta-t)\psi(t) \, dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_{\frac{r}{R}}(t)\psi(\theta-t) \, dt,$$

for all r < R is harmonic on D(0, R) and for any point of continuity θ_0 of ψ , $\lim_{\theta \to \theta_0, r \to R} U(re^{i\theta}) = \psi(\theta_0)$.

Theorem

Any continuous function on an open subset Ω of \mathbb{C} which verifies the Mean Property is harmonic.

Proof

Let $U: \Omega \longrightarrow \mathbb{R}$ be a continuous function which verifies the Mean Property. To show that U is harmonic on Ω , it suffices to show that U is harmonic in a neighborhood of each point. Let D be a disc of center z and of boundary \mathscr{C} contained in Ω . There exists a continuous function V on \overline{D} , harmonic on D and equal to U on the circle \mathscr{C} . Then V = U on D.

Corollary

Let Ω be an open subset of \mathbb{C} , the space of harmonic functions equipped with the topology of the uniform convergence on any compact is a complete space.

Proof

It suffices to show that the space of harmonic functions on an open subset Ω is closed in the space of continuous functions on Ω equipped with the topology of the uniform convergence on any compact.

Let $(U_n)_n$ be a sequence of harmonic functions which converges uniformly on compact subsets to a function U on Ω . U is continuous and is the Mean Property, thus U is harmonic.

Theorem

Let U be a locally integrable function on a domain Ω and such that

$$U(a) = \frac{1}{\pi r^2} \int_{D(a,r)} U(x,y) dx dy$$

for all $a \in \Omega$ and all r > 0 such that $\overline{D(a, r)} \subset \Omega$, then U is harmonic.

Proof

Il suffices to show that U is continuous. Let $a \in \Omega$ and r > 0 such that $K = \overline{D(a, 2r)} \subset \Omega$. We consider a sequence $(a_n)_n$ which converges to a. We can suppose that $(a_n)_n$ is in the disc D(a, r). Then by dominated convergence theorem

$$\lim_{n \to +\infty} U(a_n) = \frac{1}{\pi r^2} \int_{D(a_n, r)} U(x, y) dx dy = \lim_{n \to +\infty} \frac{1}{\pi r^2} \int_K \chi_{D(a_n, r)} U(x, y) dx dy = U(a).$$

An other proof of the Corollary 2.3

Generalities on Harmonic Functions	
Extension of Harmonic Functions	
Mean Property for Harmonic Functions	
Maximum Principle	
Poisson Formula and the Dirichlet Problem	
Topology on The Space of Harmonic Functions	
Rado's Theorem	
Harnack's Inequality	
The Reflection Principle of Harmonic Functions	

Let r > 0 such that $D(a, r) \subset \Omega$. We consider the harmonic function V solution of the Dirichlet problem on the disc D(a, r) and equal to U on $\partial D(a, r)$. We intend to show that U = V on D(a, r).

Let $\varepsilon > 0$ small enough and the mapping $U_{\varepsilon} = U - V - \varepsilon \ln(\frac{x^2 + y^2}{r^2}).$ $\lim_{x^2 + y^2 \to r^2} U_{\varepsilon}(x, y) = 0$ and $\lim_{(x, y) \to (0, 0)} U_{\varepsilon}(x, y) = +\infty.$ Then by the the Maximum principle $U_{\varepsilon} \ge 0$ on $D(a, r) \setminus \{0\}$. In making tends ε to 0, we have $U \ge V$. In consider -U, we have U = V. Thus Ucan be extended to a harmonic function on Ω .

Theorem (Characterization of Harmonic Functions)

Let $U: \Omega \longrightarrow \mathbb{C}$ be a continuous function. The following properties are equivalent

- U is harmonic on Ω.
- **2** U verifies the Mean Property.
- **③** For any disc $\overline{D(a,R)} \subset \Omega$, and any polynomial P,

$$\sup_{z\in D(a,R)}|(U-P)(z)|=\sup_{z\in \mathscr{C}(a,R)}|(U-P)(z)|.$$

• For any disc $\overline{D(a,r)} \subset \Omega$,

Proof

1) \Rightarrow 2) results from theorem 3.1.

2) \Rightarrow 1) results from theorem 6.1.

1) \Rightarrow 4) results from the Poisson's formula 5.2.

4) \Rightarrow 1) results from theorem 5.3, since the solution of the

Dirichlet's problem is harmonic.

1) \Rightarrow 3) results from the fact that any polynomial is a holomorphic function, thus the maximum principle yields the result.

It remains to show that $3 \Rightarrow 4$.

Let $a \in \Omega$ and R > 0 such that $D(a, R) \subset \Omega$ and \tilde{U} the solution of the Dirichlet problem on D(a, R) and equal to U on $\mathcal{C}(a, R)$. There exist two holomorphic functions g and h on D(a, R) such that $\operatorname{Re} g = \operatorname{Re} \tilde{U}$ and $\operatorname{Re} h = \operatorname{Im} \tilde{U}$. U is uniformly continuous on the compact D(a, R), then for $\varepsilon > 0$, there exists $s \in [0, 1]$ such that, whenever $z, w \in \overline{D(a, R)}$ and $|z-w| < sR, |\tilde{U}(z) - \tilde{U}(w)| < \varepsilon.$ The Taylor series of g and h has a radius of convergence at least R, then these series converge uniformly on D(a, (1-s)R). If $+\infty$ $g(a+z) = \sum a_n z^n$, for |z| < R, there exist $N \in \mathbb{N}$ such that $\left|\sum_{n=1}^{+\infty} a_n z^n\right| \leq \varepsilon, \quad \forall z \in \overline{D(0,(1-s)R)}.$

Then whenever $\theta \in [0, 2\pi]$,

$$\left| \mathsf{P}(\mathsf{a} + \mathsf{R} \mathsf{e}^{\mathrm{i} heta}) - \mathsf{g}(\mathsf{a} + (1 - s)\mathsf{R} \mathsf{e}^{\mathrm{i} heta})
ight| \leq arepsilon,$$

$$\operatorname{Re} P(a + Re^{i\theta}) - \operatorname{Re} g(a + (1 - s)Re^{i\theta}) \Big| \leq \varepsilon$$

and

$$\operatorname{Re} P(a + Re^{\mathrm{i}\theta}) - \operatorname{Re} g(a + Re^{\mathrm{i}\theta}) \Big| \leq 2\varepsilon.$$

Then

$$\left|\operatorname{Re}(P-g)(\mathsf{a}+\mathsf{Re}^{\mathrm{i} heta})\right|\leq 2arepsilon.$$

If $w \in D(a, R)$, the assumption 3) gives that whenever $t \in \mathbb{R}$,

$$\left| (ilde{U} - P + t)(w)
ight| \leq \sup_{ heta \in \mathbb{R}} \left| (ilde{U} - P + t)(a + Re^{\mathrm{i} heta})
ight|$$

Then

$$\left| (\tilde{U} - P + t)(w) \right|^2 \leq \sup_{\theta \in \mathbb{R}} \left| (\tilde{U} - P + t)(a + Re^{i\theta}) \right|^2$$

It results that

$$\left| (\tilde{U} - P)(w) \right|^2 + 2t \operatorname{Re}(\tilde{U} - P)(w) \leq \sup_{\theta \in \mathbb{R}} \left| (\tilde{U} - P)(a + Re^{i\theta}) \right|^2 + 2t \sup_{\theta \in \mathbb{R}} \left| \operatorname{Re}(\tilde{U} - P)(a + Re^{i\theta}) \right|^2 + 2t \operatorname{Re}(\tilde{U} - P)(w) \leq \sup_{\theta \in \mathbb{R}} \left| (\tilde{U} - P)(a + Re^{i\theta}) \right|^2 + 2t \operatorname{Re}(\tilde{U} - P)(w) \leq \sup_{\theta \in \mathbb{R}} \left| (\tilde{U} - P)(a + Re^{i\theta}) \right|^2 + 2t \operatorname{Re}(\tilde{U} - P)(w) \leq \sup_{\theta \in \mathbb{R}} \left| (\tilde{U} - P)(a + Re^{i\theta}) \right|^2 + 2t \operatorname{Re}(\tilde{U} - P)(w) \leq \sup_{\theta \in \mathbb{R}} \left| (\tilde{U} - P)(a + Re^{i\theta}) \right|^2 + 2t \operatorname{Re}(\tilde{U} - P)(w) \leq \sup_{\theta \in \mathbb{R}} \left| (\tilde{U} - P)(a + Re^{i\theta}) \right|^2 + 2t \operatorname{Re}(\tilde{U} - P)(w) \leq \sup_{\theta \in \mathbb{R}} \left| (\tilde{U} - P)(a + Re^{i\theta}) \right|^2 + 2t \operatorname{Re}(\tilde{U} - P)(w) \leq \sup_{\theta \in \mathbb{R}} \left| (\tilde{U} - P)(a + Re^{i\theta}) \right|^2 + 2t \operatorname{Re}(\tilde{U} - P)(w) \leq \sup_{\theta \in \mathbb{R}} \left| (\tilde{U} - P)(a + Re^{i\theta}) \right|^2 + 2t \operatorname{Re}(\tilde{U} - P)(w) \leq \sup_{\theta \in \mathbb{R}} \left| (\tilde{U} - P)(a + Re^{i\theta}) \right|^2 + 2t \operatorname{Re}(\tilde{U} - P)(w) \leq \sup_{\theta \in \mathbb{R}} \left| (\tilde{U} - P)(a + Re^{i\theta}) \right|^2 + 2t \operatorname{Re}(\tilde{U} - P)(w) \leq \sup_{\theta \in \mathbb{R}} \left| (\tilde{U} - P)(a + Re^{i\theta}) \right|^2 + 2t \operatorname{Re}(\tilde{U} - P)(w) \leq \sup_{\theta \in \mathbb{R}} \left| (\tilde{U} - P)(a + Re^{i\theta}) \right|^2 + 2t \operatorname{Re}(\tilde{U} - P)(w) \leq \sup_{\theta \in \mathbb{R}} \left| (\tilde{U} - P)(a + Re^{i\theta}) \right|^2 + 2t \operatorname{Re}(\tilde{U} - P)(w) \leq \sup_{\theta \in \mathbb{R}} \left| (\tilde{U} - P)(a + Re^{i\theta}) \right|^2 + 2t \operatorname{Re}(\tilde{U} - P)(w) \leq \sup_{\theta \in \mathbb{R}} \left| (\tilde{U} - P)(a + Re^{i\theta}) \right|^2 + 2t \operatorname{Re}(\tilde{U} - P)(w) \leq \sup_{\theta \in \mathbb{R}} \left| (\tilde{U} - P)(a + Re^{i\theta}) \right|^2 + 2t \operatorname{Re}(\tilde{U} - P)(w) \leq \sup_{\theta \in \mathbb{R}} \left| (\tilde{U} - P)(a + Re^{i\theta}) \right|^2 + 2t \operatorname{Re}(\tilde{U} - P)(w) \leq \sup_{\theta \in \mathbb{R}} \left| (\tilde{U} - P)(a + Re^{i\theta}) \right|^2 + 2t \operatorname{Re}(\tilde{U} - P)(w) \leq \sup_{\theta \in \mathbb{R}} \left| (\tilde{U} - P)(a + Re^{i\theta}) \right|^2 + 2t \operatorname{Re}(\tilde{U} - P)(w) \leq \sup_{\theta \in \mathbb{R}} \left| (\tilde{U} - P)(a + Re^{i\theta}) \right|^2 + 2t \operatorname{Re}(\tilde{U} - P)(w) \leq \sup_{\theta \in \mathbb{R}} \left| (\tilde{U} - P)(a + Re^{i\theta}) \right|^2 + 2t \operatorname{Re}(\tilde{U} - P)(w) \leq \sup_{\theta \in \mathbb{R}} \left| (\tilde{U} - P)(a + Re^{i\theta}) \right|^2 + 2t \operatorname{Re}(\tilde{U} - P)(w) \leq \sup_{\theta \in \mathbb{R}} \left| (\tilde{U} - P)(w) \right|^2 + 2t \operatorname{Re}(\tilde{U} - P)(w) \leq \sup_{\theta \in \mathbb{R}} \left| (\tilde{U} - P)(w) \right|^2 + 2t \operatorname{Re}(\tilde{U} - P)(w) \leq \sup_{\theta \in \mathbb{R}} \left| (\tilde{U} - P)(w) \right|^2 + 2t \operatorname{Re}(\tilde{U} - P)(w) \leq \sup_{\theta \in \mathbb{R}} \left| (\tilde{U} - P)(w) \right|^2 + 2t \operatorname{Re}(\tilde{U} - P)(w) \leq \sup_{\theta \in \mathbb{R}} \left| (\tilde{U} - P)(w) \right|^2 + 2t \operatorname{Re}(\tilde{U} - P)(w) \right|^2$$

If we tend t to $\pm\infty$,

we have

.

$$\begin{split} \left| \operatorname{Re}(\tilde{U} - P)(w) \right| &\leq \sup_{\theta \in \mathbb{R}} \left| \operatorname{Re}(\tilde{U} - P)(a + Re^{i\theta}) \right| \leq 2\varepsilon. \\ \text{Since } \tilde{U} - P \text{ is harmonic and } \left| \operatorname{Re}(P - g)(a + Re^{i\theta}) \right| \leq 2\varepsilon, \text{ then } \\ \left| \operatorname{Re}(\tilde{U} - g)(w) \right| &\leq 4\varepsilon. \\ \text{We prove in the same way that } \left| \operatorname{Im}(\tilde{U} - g)(w) \right| \leq 4\varepsilon, \text{ then } \\ \left| (\tilde{U} - g)(w) \right| \leq 4\varepsilon, \text{ which proves that } \tilde{U} = g. \end{split}$$

Theorem (The Rado's Theorem)

Let f be a continuous function on an open subset Ω and holomorphic on $\Omega \setminus Z_f$, where $Z_f = \{z \in \Omega; f(z) = 0\}$ the zero set of f. Then f is holomorphic on Ω .

Proof

Let *P* be a polynomial and R > 0 such that $\overline{D(a, R)} \subset \Omega$. We claim that (f - P) is harmonic on Ω . By theorem **??**, to prove that *f* is harmonic on D(a, R), it suffices to prove that the maximum of |f - P| on D(a, R) is reached on $\mathscr{C}(a, R)$.

If |f - P| reaches it maximum at $w \in D(a, R)$ and not on C(a, R), then f - P is not holomorphic in a neighborhood of w, which proves that w is in the boundary of Z_f . There exists a sequence $(w_n)_n$ of $D(a, R) \setminus Z_f$ which converges to w, where $Z_f = \{z; f(z) = 0\}$. Then

$$|(f-P)(w_n)| > M = \sup_{z \in \mathscr{C}_{(a,R)}} |(f-P)(z)|, \quad \forall n \in \mathbb{N}.$$

If $m = \sup_{z \in \mathcal{A}_{a,R}} |f(z)|$, there exists an integer N such that $\left(\frac{|(f-P)(w_n)|}{M}\right)^N > \frac{m}{|f(w_n)|}$

Let g be the function defined by $g = f(f - P)^N$. Since

Proposition (Harnack's Inequality)

Let Ω be an open subset of \mathbb{C} , $a \in \Omega$, R > 0 and U a continuous function on $\overline{D(a, R)}$, harmonic on D(a, R) and $U \ge 0$. Then for all $0 \le r < R$ and all $\theta \in \mathbb{R}$ we have

$$\frac{R-r}{R+r}U(a) \le U(a+re^{i\theta}) \le \frac{R+r}{R-r}U(a).$$
(2)

Proof By Poisson Formula, we have

$$U(a + re^{it}) = \frac{1}{2\pi} \int_0^{2\pi} \frac{R^2 - r^2}{R^2 - 2rR\cos(\theta - t) + r^2} U(a + Re^{i\theta}) \ d\theta.$$

 $\frac{R-r}{R+r} \leq \frac{R^2 - r^2}{R^2 - 2rR\cos(\theta - t) + r^2} \leq \frac{R+r}{R-r}.$ The result is deduced by mean property.

Corollary

Let Ω be a domain of \mathbb{C} and $(U_n)_n$ an increasing sequence of harmonic functions. If the limit of $(U_n(a))_n$ exists and finite at $a \in \Omega$, then the sequence $(U_n)_n$ converges uniformly on compact subsets of Ω to a harmonic function.

Proof

We can assume that $U_n \ge 0$ (if not we take $U_n - U_0$). We set $U(z) = \sup_{n \in \mathbb{N}} U_n(z)$. From the Harnack's inequality.

$$\frac{R-|z-a|}{R+|z-a|}U_n(a) \leq U_n(z) \leq \frac{R+|z-a|}{R-|z-a|}U_n(a).$$

Thus the sequence $(U_n)_n$ converges on any closed disc centered at a in Ω . (Increasing sequence and bounded above). Let $A = \{z \in \Omega; (U_n(z))_n \text{ converge}\}$. The set A is non empty because $a \in A$ and A is an open subset from which above. Let $z_0 \in \overline{A} \cap \Omega$ and r > 0 such that $D(z_0, r) \subset \Omega$. There exists $z_1 \in A$ such that $z_1 \in D(z_0, \frac{r}{2})$, thus $z_0 \in D(z_1, \frac{r}{2})$ and in this disc the sequence $(U_n)_n$ converges. Thus $A = \Omega$.

Let prove that U is continuous. Let $z_0 \in \Omega$, by Harnack's inequality, if $z \in D(z_0, R) \subset \Omega$

$$rac{R-|z-z_0|}{R+|z-z_0|}U(z_0)\leq U(z)\leq rac{R+|z-z_0|}{R-|z-z_0|}U(z_0).$$

Then

$$rac{-2|z-z_0|}{R+|z-z_0|} U(z_0) \leq U(z) - U(z_0) \leq rac{2|z-z_0|}{R-|z-z_0|} U(z_0).$$

Thus U is continuous on Ω . $(U_n)_n$ verifies the mean property, by the monotone convergence theorem, U is harmonic on Ω . By Dini's theorem, the convergence is uniform on any compact of Ω .

For harmonic extension (continuation) we prove the Schwarz reflection principle.

Theorem

Let Ω be a domain in \mathbb{C} symmetric with respect to the real axis. Let $\Omega^+ = \Omega \cap \mathcal{H}^+$, $\Omega^- = \Omega \cap \mathcal{H}^-$ and I a non empty open interval of $\Omega \cap \mathbb{R}$. Suppose that a harmonic function U(x, y) = U(z) on Ω^+ and such that for all $a \in I$, $\lim_{z \in \Omega^+ \longrightarrow a} U(z) = 0$. Then U can be continued (extended) harmonically on the domain Ω . The harmonic continuation is defined by the function \tilde{U} which is equal to U on Ω^+ , 0 on the segment I, and $-U(\bar{z})$ on Ω^- .

Proof

We must prove that \tilde{U} is harmonic on the domain Ω . By definition, \tilde{U} is harmonic on the domain $\Omega^+ \cup \Omega^-$. To show that \tilde{U} is also harmonic on the segment *I*, we consider a disc D(0, R) with $a \in I$ and *R* is so small that $D(0, R) \subset \Omega$. Let *V* be the solution of the Dirichlet problem on the disc D(0, R) and equal to \tilde{U} on the boundary of D(0, R).

$$V(z)=V(a+re^{\mathrm{i} heta})=rac{1}{2\pi}\int_{0}^{2\pi} ilde{U}(a+Re^{\mathrm{i}arphi})rac{R^2-r^2}{R^2+r^2-2rR\cos(heta-arphi)}d heta$$

To prove that \tilde{U} is harmonic on the real axis, we will show that $\tilde{U}(z) = V(z)$ in D(0, R).

The functions V and \tilde{U} are equal on the semi circle $\{z \in \mathbb{C}; \ \operatorname{Im} z > 0, \ |z - a| = R\}$. If z lies on the real axis, the integral from the upper and lower semi-circles cancel, hence, $V = 0 = \tilde{U}$ on that part of I which lies in D(0, R). By the Maximum and Minimum Principles, $V(z) = \tilde{U}(z)$ in the upper half of D(0, R). Suppose first that z is in the upper half of D(0, R). On the boundary arc $\operatorname{Im} z > 0$, |z - a| = R, the function V takes the boundary values $\tilde{U}(a + Re^{i\theta})$. By the same argument $V(z) = \tilde{U}(z)$ in the lower half of D(0, R).