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Introduction

In Chapter 7 we introduced the concepts of kinetic energy associated with
the motion of members of a system and internal energy associated with the
temperature of a system.

In this chapter we introduce potential energy, the energy associated with
the configuration of a system of objects that exert forces on each other.

The potential energy concept can be used only when dealing with a special
class of forces called conservative forces. When only conservative forces
act within an isolated system,

the kinetic energy gained (or lost) by the system as its members change
their relative positions is balanced by an equal loss (or gain) in potential
energy. This balancing of the two forms of energy is known as the principle
of conservation of mechanical energy.



8.1 Potential Energy of a System

Let us now derive an expression for the gravitational potential
energy (U,) associated with an object (m) at a given location (y)
above the surface of the Earth

Ug =mgy
Mathematical description of the work done on a system that changes

the gravitational potential energy of the system is give by:
W=AU,

The gravitational potential energy depends only on the vertical height
of the object above the surface of the Earth. The same amount of
work must be done on an object—Earth system whether the object is
lifted vertically from the Earth or is pushed starting from the same

point up a frictionless incline, ending up at the same height )



8.2 The Isolated System— Conservation of
Mechanical Energy

. e book, shown in the figure, falls back to its original height, from
y,toy, the work done by the gravitational force on the book is:
W =mgy, —mgy, =AK=—-AU,

So

AK+AU,=0

* Mechanical energy is defined as: N

Emecn = K + Uy

* Or, ingeneral:
Emech =K +U 0



8.2 The Isolated System— Conservation of
Mechanical Energy

es in energy in Equation 8.7 explicitly:
(Kr —Ki) + (Ur = U;) =0
(Kf + Uf) - (KI. + Ul) =0
Kf + Uf — Ki + Ui

Equation 8.9 is a statement of conservation of mechanical energy for
an isolated system.

An isolated system is one for which there are no energy transfers
across the boundary.

The energy in such a system is conserved—the sum of the kinetic and
Potential energies remains constant.

This statement assumes that no nonconservative forces act within
the system. ’
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Conservation of Mechanical Energy
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(b)

Potential Energy of a Spring is given by:

U 1k 2
= —kx
S 2 (c)

* When the block is released from rest, the spring exerts a force on the

block and returns.

x=0
—e
=%

|
|
] Bl o

* toits original length. The stored elastic potential energy is
transformed into kinetic energy of the block.

* The elastic potential energy stored in a spring is zero when: x =0

* Energy is stored in the spring only when the spring is either stretched

or compressed.
7



8.2 The Isolated System— Conservation of
Mechanical Energy

Example 8.2 Ball in Free Fali

A ball of mass m is dropped from a height h above the ground, as shown

in Figure . Neglecting air resistance, determine the speed of the ball
when it is at a height y above the ground.

* Solution: \':\, {'
Kf + Uf = Kl + U]c T &
1
_mvz + mgy = 0+ mgh e j:-‘g};.v"w
2 f " K,=1%

v = J29(h — y) P




8.2 The Isolated System— Conservation of
Mechanical Energy

* Example 8.3 The Pendulum

A pendulum consists of a sphere of mass m = 200 gm attached to a light
cord of length L =50 cm, as shown in Figure. The sphere is released from
rest at point A when the cord makes an angle 8A=37owith the vertical.

* (A) Find the speed of the sphere when it is at the lowest point B.

* Solution:
Kg +Ug = K4+ Uy .
1 ,/I:"e -
S 2 — — - [;C()SOA A
5 MV . mgL = 0 —mgL cos, 0 e
Up = \/ZgL(l — c0s0,) T \J: """""" </

UVB=1.4m/s

mg



8.2 The Isolated System— Conservation of
Mechanical Energy

* Example 8.3 The Pendulum
(B) What is the tension TB in the cord at B?
Solution:

Newton’s second law gives:

UZB

ZFrzmg—TB=maT=—mT

’!}'2
B
TB =mg+mT

10



8.2 The Isolated System—
Conservation of Mechanical Energy

|
8.5 The Spring-Loaded Popgun

Ex

Thae#ching mechanism of a toy gun consists of a spring of unknown
spring constant. When the spring is compressed 0.120 m, the gun, when
fired vertically, is able to launch a 35.0-g projectile to a maximum height
of 20.0 m above the position of the projectile before firing.

(A) Neglecting all resistive forces, determine the spring constant.

Solution:
Total energy at position (c) for the projectile + spring = Total energy at
position (A)
* Hence:
[Kprojectile + Uprojecti[e + Uspring]c —
[Kprojectile + Uprojecti[e + USpring]A

11




8.2 The Isolated System— © @ x=200m
Conservation of Mechanical Energy

|

Ex* 8.5 The Spring-Loaded Popgun

N 35 =0.120n

Ko+ Uy + Uge = Ky + Ugg + Usy
0+mgh+0=0+0+§kx B
2mgh A

(a) (b)

* Find the speed of the projectile as it moves through the eduilibrium
position of the spring at xp
KB + UgB + USB — KA + UgA + USA

1 2 1.
EmvB +mgx3+0=0+0+§kx .




© ) x=20.0m

\/ ke
'LB =
m
(953 N/m) (0.120 m)*>
(0.0350 kg)

~ 2pxg

~ 2(9.80 m/s%) (0.120 m)

19.7m/s

(a) (b)



8.3 Conservative and Nonconservative

iFO rces

Conservative Forces
Conservative forces have these two equivalent properties:

1. The work done by a conservative force on a particle moving
between any two points is independent of the path taken by the
particle.

2. The work done by a conservative force on a particle moving
through any closed path is zero. (A closed path is one in which
the beginning and end points are identical.)

Examples of Conservative Forces:
=1.gravitational force
=2.5pring force

14



8.4 Changes in Mechanical Energy for
Nonconservative Forces

A force is nonconservative if it does not satisfy properties 1 and 2 for
conservative forces.

Nonconservative forces acting within a system cause a change in the
mechanical energy of the system.

As an example of the path dependence of the work, consider moving a book
between two points on a table. If the book is moved in a straight

line along the path between points A and B; a certain amount of work against
the kinetic friction force must be spent to keep the book moving at a constant
speed.

Now, imagine that the book was pushed along a semicircular path. More work
must have been performed against friction along this longer path than along
the straight path.

Hence, The work done depends on the path, so the friction force cannot
sbe conservative force. 15



8.4 Changes in Mechanical Energy
for Nonconservative Forces

Consider a body sliding across a surface. As the body moves through a
distance d, the only force that does work on it is the force of kinetic
friction. This force causes a decrease in the kinetic energy of the body.
This decrease was calculated in Chapter 7, leading to Equation 7.20,
which we repeat here:

AK = —fkd

If there is also a change in potential energy then:
Emech =AK +A Ug

Or in general, for any potential:
Emech =AK+AU = —fkd

where AU is the change in all forms of potential energy. 16



Example 8.6 Crate Sliding Down a Ramp

A 3.00-kg crate slides down a ramp. The ramp is 1.00Om in
length and inclined at an angle of 30.0°, as shown in Figure
8.1L The crate starts from rest at the top, experiences a con-
stant friction force of magnitude 5.00N, and continues to
move a short distance on the horizontal floor after 1t leaves
the ramp. Use energy methods to determine the speed of
the crate at the bottom of the ramp.

E;=K+U=0+%+U= mg,
= (3.00 kg) (9.80 m/s%) (0.500 m) = 14.7]

Ej= K+ U= gzmy® + 0

~fid = (=5.00 N)(1.00 m) =~ 5.00 |

E/- E; = %mlr/2 = mgy; = —fid

%,m,[‘-’ = 14.7] - 5.00] = 9.70 ]

- 194 9,9

1,/-’ = —J- = 6,47 m=/s-
3.00 kg

v = 254 m/s

1 (0.500 m

S,




Example 8.7 Motion on a Curved Track

A child of mass m rides on an irregularly curved slide of
height /= 2.00 m, as shown in Figure 8.12. The child starts
from rest at the top.

(A) Determine his speed at the bottom, assuming no friction
is present.

K+ U=K+ U

m.[?+0=0+mgh

v[=‘f2?h.

= V2gh = V2(9.80 m/5*) (200 m) = 6.26m/s

1S |-

b W W Y 'ﬂ:ﬁl”—/‘
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(B) If a force of kinetic friction acts on the child, how
much mechanical energy does the system lose? Assume that
v = 3.00 m/s and m = 20.0 kg.

AEyecn = (Kp+ Up) = (K; + U)
= (-;-mp[? +0) = (0 + mgh) = ,-;-mv,g ~ mgh
= 3(20.0 kg)(3.00 m/s)?
= (20.0kg)(9.80 m/ $2)(2.00 m)

= =302



Example 8.8 Let's Go Skiing!

A skier starts from rest at the top of a frictionless incline of
height 20.0 m, as shown in Figure 8.13. At the bottom of the
incline, she encounters a horizontal surface where the coef-
ficient of kinetic friction between the skis and the snow is
0.210. How far does she travel on the horizontal surface be-
fore coming to rest, if she simply coasts to a stop?

TapE =
€
2@,::1;"
200 m
L [HEi. ® ©
. e —!

| = \J?gh = \[‘2(9.80 m/$7)(20.0 m) = 19.8 m/s



(Kg + [g) = (Kg + L)

Ji = pgn = pypmyg, we obtain
AEmech = Ec = Eg = — pymgd

(0 + 0) = (mvg® + 0)

= pymgd

(19.8 m/s)*

= = 095.2m
2(0.210)(9.80 m/s7)



Example 8.9 Block-Spring Collision

A block having a mass of 0.80kg is given an inital velocity
va = L.2m/s to the night and collides with a spring of neghi-
gible mass and force constant k = 50N/m, as shown in
Figure 8.14.

(A) Assuming the surface to be frictionless, calculate the
maximum compression of the spring after the collision.

Ec = Ey
Kc 4+ Ug = Kp + U,

0+ Skl = 2mupd + 0

m 0.80 kg (b)
Xmax =\ T A = m(l.?- m/s)

= 0.15m

() ;

(d} ¢

E=Lmu?

E=Lmug? + L heg®



(B) Suppose a constant force of kinetic friction acts be-
tween the block and the surface, with g = 050, If the
speed of the block at the moment it collides with the spring

7 is v = 1.2 m/s, what is the maximum compression x¢ in
the spring?

fi = mn = wpmg = 0.50(0.80 kg) (9.80 m/s%) = 3.92 N

E=1my?

AEnech = —fixc = (—3.92xc)
AE e = Ep = E; = (0 + $hxc®) — (gmug+ 0) = — fixc
3 (50)xc* — 3(0.80)(1.2)* = — 3.92x
Wxc” + 3.92xc — 0.576 = 0

E:-i';mvszw_i;kxe"'

(c)

Solving the quadratic equation for x¢ gives x¢ = 0.092 m
and x¢c = =025 m. The physically meaningful root is @
x¢ = 0,092 m. The negative root does not apply to this sit-
uation because the block must be to the right of the origin




Example 8.10 Connected Blocks in Motion

Two blocks are connected by a light string that passes over a
fricionless pulley, as shown in Figure 8.15. The block of
mass m; lies on a horizontal surface and 15 connected to a
spring of force constant k. The system is released from rest
when the spring is unstretched. If the hanging block of mass
my falls a distance & before coming to rest, calculate the co-
efficient of kinetic fricion between the block of mass my
and the surface.

(1) AE = AU, + AU,

mech

(2) Abpeeh = = fih = —pym gh

(3) AU, = Ug = Uygi = 0 = mogh
(4) AU, = Uy~ Us=3kh* = 0

Substituting Equations (2), (3). and (4) into Equation (1)
gives

= pgmygh = —mogh + %kh'“’

Bi =



8.5 Relationship Between Conservative Forces
and Potential Energy

The work done by a cons. force F as a particle moves along the x axis is:

Xf
74 =f F. dx =—AU
Xi

Xf
Or AU :Uf—Ui:—f dex
Xj

Therefore, AU is negative when F, and dx are in the same direction, as

when an object is lowered in a gravitational field or when a spring
pushes an object toward equilibrium.

We can then define the potential energy function as:

Xf
Uf(}f) = —f Fx dx + Ui
X

25



8.5 Relationship Between Conservative Forces
and Potential Energy

If the point of application of the force undergoes an infinitesimal
displacement d, we can express the infinitesimal change in the
potential energy of the system dU as

dU = —F, dx

Therefore, the conservative force is related to the potential energy
function through the relationship

dUu

dx
That is, the x component of a conservative force acting on an object
within a system equals the negative derivative of the potential energy of
the system with respect to x.

X

26



Lecture Summary

If a particle of mass m is at a distance y above the Earth’s surface, the gravitational
potential energy of the particle—=Earth system is

Uy = mgy
The elastic potential energy stored in a spring of force constant k is
1
U, = —kx?
s =5 X

Total Energy of A system is:

27



Lecture Summary

* A forceis conservative if the work it does on a particle moving between two
points is independent of the path the particle takes between the two points, Or if
the work it does on a particle is zero when the particle moves through an
arbitrary closed path and returns to its initial position. A force that does not meet
these criteriais said to be nonconservative.

* The total mechanical energy of a system is defined as the sum of the kinetic
energy and the potential energy:

Emech - K+ U

* |fasystemis isolated and if no nonconservative forces are acting on objects
inside the system, then the total mechanical energy of the system is constant:
Kf + Uf — Ki + Ui

28



PROBLEMS
|

Sﬁ 8.1 Potential Energy of a System

2. A 400-N child is in a swing that is attached to ropes 2.00 m long. Find the
gravitational potential energy of the child—Earth system relative to the child’s lowest
position when (a) the ropes are horizontal, (b) the ropes make a 30.0° angle with the
vertical, and (c) the child is at the bottom of the circular arc.

SOLUTIONS TO PROBLEM:
Ug — mgy b O.
y = 2 2H0m /.(2':00 m) cos 30.0°
y =2(1—cos8) 7

y=0 - O L (2.00 m)(1-cos 30.0°)
- e e

FIG. P8.2

29




PROBLEMS
|

Sei 8.1 Potential Energy of a System

5. A bead slides without friction around a loop-the-loop (Fig. P8.5). The bead is
released from a height h " 3.50R.

(a) What is its speed at point A?
(b) How large is the normal force on it if its mass is 5.00 g?
SOLUTIONS TO PROBLEM:
Ki + Ui — Kf + Uf )

1
mgh + 0 = mg(2R) +§mv2 A

m v?
5 ZF=mF=n+mg ==

FIG. P8.5

Figure P8.5

30




PROBLEMS
|

Sei 8.1 Potential Energy of a System

6. Dave Johnson, the bronze medalist at the 1992 Olympic decathlon in Barcelona,
leaves the ground at the high jump with vertical velocity component 6.00 m/s. How
far does his center of mass move up as he makes the jump?

SOLUTIONS TO PROBLEM:

Ki+Ui=Kf+Uf
1

Emvz + 0 =0+mgy

31




PROBLEMS
|

Seﬂn 8.1 Potential Energy of a System

11. A block of mass 0.250 kg is placed on top of a light vertical spring of
force constant 5 000 N/m and pushed downward so that the spring is
compressed by 0.100 m. After the block is released from rest, it travels
upward and then leaves the spring. To what maximum height above the point
of release does it rise?

SOLUTIONS TO PROBLEM:

From conservation of energy for the block-spring-Earth system,

U, =u,, Tl:]
5, 1
» t =
o1 0.100+ 1:1 4 T
) I 2 # §
(0.250 kg)(9.80 m/s”)h = (?](5 000 N/m)(0.100 m)~
i FI1G. Ps8.11
This gives a maximum height 7 =| 10.2 m |. >




PROBLEMS

n 8. 1 Potential Energy of a System

ed by a light string passing over a light
frictionless pulley as shown in Figure P8.13. The object of mass 5.00 kg is
released from rest. Using the principle of conservation of energy, (a)
determine the speed of the 3.00-kg object just as the 5.00-kg object hits the
ground. (b) Find the maximum height to which the 3.00-kg object rises.

SOLUTIONS TO PROBLEM:

Using conservation of energy for the system of the Earth and the two objects O
o l . ) 7R
(a) (5.00 kg)g(4.00 m) = (3.00 kg)g(4.00 m)+—(5.00+3.00)z" & )
. — = ] iy =
v=419.6 =| 4.43 m/s 5.00 kg
i m = 5.00 kg
"y = | , '
(b) Now we apply conservation of energy for the system of the 3.00 kg 3.00kg| 1 .4.00m
object and the Earth during the time interval between the instant | T T
when the string goes slack and the instant at which the 3.00 kg
object reaches its highest position in its free fall. my = 3.00 kg h=400m
| FIG. P8.13

:(3.“0):"" =mg Ay = 3.00gAy

Ay =100 m Figure P8.13 Problems 13 and 14,

Ymax = 4.00 m + Ay ,,iﬂﬂ m ‘

33




PROBLEMS
|

Seciion 8.1 Potential Energy of a System

1 0= is fired from a cannon with muzzle speed of 1 000
m/s at an angle of 37.0° with the horizontal. A second ball is fired at an angle
of 90.0°. Use the conservation of energy principle to find (a) the maximum
height reached by each ball and (b) the total mechanical energy at the
maximum height for each ball. Let y =0 at the cannon.

SOLUTIONS TO PROBLEM:

K,+U,=K,+U_,

(1oo0)" |
V., o N
2(9.80) |

(20.0 kg {1000 m/s) =] 1.00 =107 1.

34




PROBLEMS
|

S
F

31. The coefficient of friction between the 3.00-kg block and the surface in

Figure P8.31 is 0.400. The system starts from rest. What is the speed of the
5.00-kg ball when it has fallen 1.50 m?

SOLUTIONS TO PROBLEM:

ion 8.4 Changes in Mechanical Energy for Nonconservative

1

) , " ST 3.00 kg
U, +K, + AE e =U s + Ky mygh— fh = mv” o myv” S

%

—

f=pn=pumg

1 4') "‘/1_ \\’,
mogh— umygh = = (my +my)o° .

Z 5.00 kg

y  2{my — pmy )(hg)

R my +m, FIG. P8.31

12(9.80 m/s?)(1.50 m )[5.00 kg - 0.400(3.00 kg)]
- \[ 8.00 kg

=| 3.74 m/s

35



PROBLEMS
|

Section 8.4 Changes in Mechanical Energy for Nonconservative
F

33. A 5.00-kg block is set into motion up an inclined plane with an initial

speed of 8.00 m/s (Fig. P8.33). The block comes to rest after traveling 3.00 m

along the plane, which is inclined at an angle of 30.0° to the horizontal. For
this motion determine

(a) the change in the block’s kinetic energy, (b) the chanae in the notential
energy of the block—Earth system, and (c) the fricl . - 500 N
block (assumed to be constant). (d) What is the cc / i o

. .'v,.\ a ..-'.,-“"--"“
SOLUTIONS TO PROBLEM: "l
\ -
(a) AK == m( v z :','} - o i 160 T ‘ /
2 2 . |
e “30.0
(b) AL = m2g(3.00 m)sin 30.0 ‘ 73.5] fetels
(c) The mechanical energy converted due to friction is 86,5 ] Figure P8.33
86.5 I -
00 ) _ToREN |
3.00m !
(d) = ppn = pymgcos30.0°=28.8 N
28.8 N
288N 0.679 36

L,
(5.00 kg )(9.80 m/s” Jcos30.0°




PROBLEMS
|

S
F

36. A 50.0-kg block and a 100-kg block are connected by a string as in Figure
P8.36. The pulley is frictionless and of negligible mass. The coefficient of
kinetic friction between the 50.0 kg block and incline is 0.250. Determine the
change in the kinetic energy of the 50.0-kg block as it moves from ! to ", a
distance of 20.0 m. A

SOLUTIONS TO PROBLEM:

n 8.4 Changes in Mechanical Energy for Nonconservative

T/,‘

Y F, = :c0s37.0°=0
25y =g 0 mg sin 37° » Y _
Son=mgcos37.0°=400 N "_t 3_2;:"'“.\' cos 37°¢
f = =0.250(400 N) =100 N mg v
- fAx = AE ony m = 50.0 kg kg / 100 kg
(—100)(20.0) = AU 4 + AUz + AK 4 + AKp \/ /@ ==
AU 4 =m ,g(h, — ) =(50.0)(9.80)(20.0sin 37.0°) = 5.90 x 10* FIG. P8.36 \/\
&

AU, = mpg(h, — k)= (100)(9.80)(-20.0) = ~1.96 x 10* l\

' 1 s o \ 7.0
AKy =—m alvy—o7)

2 | » ) my : &y
AKp =—mpylvj —o] )= = AK 4 =2AK Figure P8.36

... r A

37

. . , | 1
Adding and solving, AK, =| 3.92 K] |




PROBLEMS
|

S
F

n 8.4 Changes in Mechanical Energy for Nonconservative

38. A 75.0-kg skysurfer is falling straight down with terminal speed 60.0 m/s.
Determine the rate at which the skysurfer—Earth system is losing mechanical

energy.

SOLUTIONS TO PROBLEM:

I'he total mechanical energy of the skysurfer-Earth system is

- . 1 ;
I'memh K + U}, = mo~ + m(«\'h_
Since the skysurfer has constant speed,
JL , (1:‘ (II.'
mech _ mo +mg =) + '”“s‘{ )= mgo.
dt dt dt : :

The rate the system is losing mechanical energy is then

mech

‘.JE
dt

= mgv = (75.0 kg)(9.80 m,;"'s" J(60.0 m/s)= 7 44.1 KW J 38




PROBLEMS
|

S
E

w 8.5 Relationship Between Conservative Forces and Potential

42. A potential-energy function for a two-dimensional force is of the form
U=3xy-7x.

Find the force that acts at the point (x, ).

QOILIITTONS TO PRORI FM:

oll 6(33{33; — 71‘)

Fo=-—"7=- " = —(9«*231— 7) =7-9xy
ox X 30.35
S Oy Oy

Fal

Thus, the force acting at the point (x, y) is F= Rjik + F[j = (7 — 9x2y)i — 3x3} .

39




PROBLEMS

nal Problems

I pose theincline is frictionless for the system
described in Problem 54 (Fig. P8.54). The block is released from rest with the
spring initially unstretched.

@How far does it move down the incline before coming to rest?

w)(b) What is its acceleration at its lowest point? Is the acceleration constant?
(c) Describe the energy transformations that occur during the descent.

SOLUTIONS TO PROBLEM:

odkle Ao, AF 0 t* k=100 N/m

A

“'_2

Hyeswtonw, U, « U1
whese L« (mypain8)s
™

| Figure P8.54 Problems 54 and 55.
Liigravity) decreases monotonically as U Isaght decreases 40




PROBLEMS
|

nal Problems

Ad

57*0.0«9 block is released from point A in Figure P8.57. The track is
frictionless except for the portion between points B and C, which has a
length of 6.00 m. The block travels down the track, hits a spring of force
constant 2 250 N/m, and compresses the spring 0.300 m from its equilibrium
position before coming to rest momentarily.

Determine the coefficient of kinetic friction between the block and the rough
surface between B and C.

SOLUTIONS TO PROBLEM: LT

. 1. -,
| Eh_ —mgh=—pumgd g

— h—L
J”=mgr k" o
mgd g

’<— 6.00 m 4>1 W\\'&M

Figure P8.57

3.00 m

|

41




PROBLEMS
|

A ional Problems

5 = ected to a 30.0-kg block by a string that passes
over a Ilght frictionless pulley. The 30.0-kg block is connected to a spring that
has negligible mass and a force constant of 250 N/m, as shown in Figure
P8.59. The spring is unstretched when the system is as shown in the figure,
and the incline is frictionless. The 20.0-kg block is pulled 20.0 cm down the
incline (so that the 30.0-kg block is 40.0 cm above the floor) and released
from rest.

Find the speed of each block when the 30.0-ka block is 20.0 cm above the
floor (that is, when the spring is unstretched).
SOLUTIONS TO PROBLEM: / ‘
20.0 kg
(K+1),=(K+U),

0+(30.0 kg)(9.80 m/s*)(0.200 m)+ %4250 N/m})(0.200 m)* 30.0 kg

==

E iﬁoo kg)o® +(20.0 kg)(9.80 m/s)(0.200 m)sin40.0° \40 0° *é I—)"-“ o
2 ' (f

588 J+500]=(25.0kg)v" +25.2]

Figure P8.59




PROBLEMS
|

A jonal Problems

6 = ' to the right on a surface having a coefficient of
kinetic frlctlon 0.250 (Fig. P8.60). The object has a speed of v/" 3.00 m/s
when it makes contact with a light spring that has a force constant of 50.0
N/m. The object comes to rest after the spring has been compressed a
distance d. The object is then forced toward the left by the spring and
continues to move in that direction beyond the spring’s unstretched position.
Finally, the object comes to rest a distance D to the left of the unstretched
spring. Find (a) the distance of compression d, (b) the speed v at the
unstretched position when the object is moving to the left, and (c) the
distance D where the object comes to rest. «  romemommime e seu s s

SOLUTIONS TO PROBLEM:




