# Infinite Products 

## BLEL Mongi

Department of Mathematics
King Saud University
February 14, 2023
(1) Generalities on the Infinite Product
(2) Infinite Product of Holomorphic Functions
(3) Factorization of Entire Functions

4 The Gamma Euler's Function

## Definition

Let $\left(a_{n}\right)_{n}$ be a sequence of complex numbers, $a_{n} \neq 0$ for all $n \in \mathbb{N}$ and let $\left(p_{n}\right)_{n}$ be the sequence defined by $p_{n}=\prod_{k=0}^{n} a_{k}$.
We say that the infinite product $\prod_{n \geq 0} a_{n}$ is convergent if the sequence $\left(p_{n}\right)_{n}$ converges to a non zero complex number and we denote $\prod_{n=0}^{+\infty} a_{n}=\lim _{n \rightarrow+\infty} \prod_{k=0}^{n} a_{k}$.

## Examples

(1) If $a_{n}=1-\frac{1}{n+1}$, then $p_{n}=\frac{1}{n+1} \underset{n \rightarrow+\infty}{\longrightarrow} 0$ and the infinite product $\prod_{n \geq 1} a_{n}$ is divergent.
(2) If $a_{n}=1+\frac{1}{n+1}=\frac{n+2}{n+1}$, then $p_{n}=\frac{n+2}{2} \underset{n \rightarrow+\infty}{\longrightarrow}+\infty$ and the infinite product $\prod_{n>1} a_{n}$ is divergent.
(3) If $a_{n}=1-\frac{1}{n^{2}}, n \geq 2$, then $p_{n}=\frac{n+1}{2 n}$ and the infinite product $\prod_{n \geq 1} a_{n}$ is divergent.

## Remark 1 :

If the infinite product $\prod_{n \geq 1} a_{n}$ is convergent, then $\lim _{n \rightarrow+\infty} a_{n}=1$. $\left(\lim _{n \rightarrow+\infty} a_{n}=\lim _{n \rightarrow+\infty} \frac{p_{n}}{p_{n-1}}=1\right.$.) The converse is not true. It suffices to take $a_{n}=1-\frac{1}{n+1}$ or $a_{n}=x$, with $0<x<1$.

## Proposition

Let $\left(a_{n}\right)_{n}$ be sequence of non zeros complex numbers. The infinite product $\prod_{n \geq 0} a_{n}$ is convergent if and only if the series $\sum_{n \geq 0} \log a_{n}$ is
convergent, with $\log a_{n}=\ln \left|a_{n}\right|+\mathrm{i} \theta_{n}$, and $\theta_{n}$ is the unique argument of $a_{n}$ in the interval ] $-\pi, \pi$ ].

## Proof

We set $S_{n}=\sum_{j=0}^{n} \log a_{j}, p_{n}=e^{S_{n}}$. If the series $\sum_{n \geq 0} \log a_{n}$ is convergent to $S$, then $\lim _{n \rightarrow+\infty} S_{n}=S$ and $\lim _{n \rightarrow+\infty} p_{n}=e^{S} \neq 0$. The infinite product is then convergent.
If the infinite product is convergent to $p \neq 0$. Let $\lambda \in \mathbb{C}$ such that $e^{\lambda}=p$, so $\lim _{n \rightarrow+\infty} e^{S_{n}}=e^{\lambda}$ and $\lim _{n \rightarrow+\infty} e^{S_{n}-\lambda}=1$. Then there exists an integer $N$ such that whenever $n \geq N, \log \left(e^{S_{n}-\lambda}\right)$ is defined. There exists a sequence $\left(k_{n}\right)_{n} \in \mathbb{Z}$ such that

$$
S_{n}-\lambda=\log \left(e^{S_{n}-\lambda}\right)+2 \mathrm{i} k_{n} \pi .
$$

Since $e^{S_{n}-\lambda}$ tends to 1 , we have

$$
\lim _{n \longrightarrow+\infty} S_{n}-\lambda-2 \mathrm{i} k_{n} \pi=0,
$$

Furthermore $S_{n+1}-S_{n}=\log a_{n}$ tends to 0 , then the sequence of integers $\left(k_{n+1}-k_{n}\right)_{n}$ tends also to 0 , then it vanishes from a rank $N_{1}$ and $\lim _{n \rightarrow+\infty} S_{n}=\lambda+2 \mathrm{i} \pi k_{N_{1}}$.

## Example

$a_{n}=1+\frac{1}{n+1}, \ln a_{n}=\ln \left(1+\frac{1}{n+1}\right) \approx \frac{1}{n}$. The series $\sum_{n \geq 0} a_{n}$ is
divergent.
$a_{n}=1-\frac{1}{n^{2}}, \ln a_{n}=\ln \left(1-\frac{1}{n^{2}}\right) \approx \frac{-1}{n^{2}}$. The series $\sum_{n \geq 2} a_{n}$ is
convergent.

## Definition

Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of complex numbers. We say that the infinite product $\prod_{n \geq 0} a_{n}$ is convergent if there exists a rank $n_{0} \in \mathbb{N}$ such that for $n \geq n_{0}, a_{n} \neq 0$ and $\lim _{n \rightarrow+\infty} \prod_{p=n_{0}}^{n} a_{p}$ exists and it is a non zero complex number.

## Definition

We say that the infinite product $\prod_{n \geq 0}\left(1+u_{n}\right)$ is absolutely convergent if the infinite product $\prod_{n \geq 0}\left(1+\left|u_{n}\right|\right)$ is convergent.

## Proposition

An infinite product absolutely convergent is convergent.

## Lemma

Let $\left(u_{n}\right)_{n}$ be a sequence of non negative real numbers. The series $\sum_{n \geq 0} u_{n}$ converges if and only if the infinite product $\prod_{n \geq 0}\left(1+u_{n}\right)$ converges.

## Proof

We have, for all $x \geq 01+x \leq e^{x}$. We denote $S_{n}=\sum_{k=0}^{n} u_{k}$ and
$p_{n}=\prod_{k=0}^{n}\left(1+u_{k}\right)$. We have

$$
1+S_{n}=1+\sum_{k=0}^{n} u_{k} \leq \prod_{k=0}^{n}\left(1+u_{k}\right) \leq e^{S_{n}}
$$

(This lemma results also because the series $\sum_{n \geq 0} u_{n}$ and
$\sum_{n \geq 0} \ln \left(1+u_{n}\right)$ have the same nature since $\lim _{x \rightarrow 0^{+}} \frac{\ln (1+x)}{x}=1$.) $\square$ Proof of the Proposition 1.5
If the infinite product is absolutely convergent, the series $\sum_{n=0}^{+\infty}\left|u_{n}\right|$ is

To prove that the infinite product $\prod_{n \geq 0}\left(1+u_{n}\right)$ is convergent, it suffices to prove that the series $\sum_{n \geq n_{0}}\left|\ln \left(1+u_{n}\right)\right|$ is convergent.
For $|z| \leq \frac{1}{2}, \ln (1+z)=\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{n+1} z^{n+1}=z h(z)$. For $|z| \leq \frac{1}{2}$,
$|h(z)| \leq M$. Then $\left|\ln \left(1+u_{n}\right)\right| \leq M\left|u_{n}\right|$, for $n \geq n_{0}$, thus the series
$\sum_{n \geq 0}\left|\ln \left(1+u_{n}\right)\right|$ is convergent.

## Corollary

If the infinite product $\prod_{n \geq 0} a_{n}$ is absolutely convergent, then for all permutation $\sigma$ of $\mathbb{N}$, the infinite product $\prod_{n \geq 0} a_{\sigma(n)}$ is convergent.

## Proposition

Let $\left(u_{n}\right)_{n}$ be a sequence of real numbers such that $0 \leq u_{n}<1$, $\forall n \in \mathbb{N}$.
The infinite product $\prod_{n \geq 0}\left(1-u_{n}\right)$ is convergent if and only if the series $\sum_{n \geq 0} u_{n}$ is convergent.

## Proof

The sequence $\left(p_{n}=\prod_{k=0}^{n}\left(1-u_{k}\right)\right)_{n}$ is decreasing and non negative, then it converges and $0<p_{n} \leq e^{-\sum_{k=0}^{n} u_{k}}$.
If $\sum_{n=0}^{+\infty} u_{n}=+\infty$, then $\lim _{n \rightarrow+\infty} p_{n}=0$ and then the infinite product
is divergent.
If the series $\sum_{n \geq 0} u_{n}$ converges. Let $0<\varepsilon<\frac{1}{2}$, there exists $n_{0} \in \mathbb{N}$
such that $\sum_{n=n_{0}}^{+\infty} u_{n}<\varepsilon$.

So for all $N>n_{0}$,

$$
0<1-\prod_{n=n_{0}}^{N}\left(1-u_{n}\right)=\left|1-\prod_{n=n_{0}}^{N}\left(1-u_{n}\right)\right| \leq \prod_{n=n_{0}}^{N}\left(1+u_{n}\right)-1 \leq e^{\sum_{n=n_{0}}^{N} u_{n}}-1 \leq
$$

$$
0 \leq p_{n_{0}}-p_{N}=p_{n_{0}}\left(1-\prod_{n=n_{0}+1}^{N}\left(1-u_{n}\right)\right) \leq 2 \varepsilon p_{n_{0}}
$$

It results that $0<p_{n_{0}}(1-2 \varepsilon)$ and $p_{N} \geq(1-2 \varepsilon) p_{n_{0}}$. The sequence $\left(p_{n}\right)_{n}$ is decreasing and bounded above by $p_{n_{0}}(1-2 \varepsilon)$, then it converges to a number $L>0$, which proves that the infinite product $\prod_{n \geq 0}\left(1-u_{n}\right)$ is convergent.
(This lemma results also from the fact that the series $\sum_{n \geq 0} u_{n}$ and
the series $\sum_{n \geq 0} \ln \left(1-u_{n}\right)$ have the same nature, because
$\left.\lim _{x \rightarrow 0} \frac{-\ln (1-x)}{x}=1.\right)$

## Theorem

Let $\left(f_{n}\right)_{n}$ be a sequence of of bounded functions defined on a non empty subset $E$ of $\mathbb{C}$. We assume that the series $\sum_{n \geq 1}\left|f_{n}\right|$ converges uniformly on $E$, then the infinite product $\prod_{n \geq 0}\left(1+f_{n}\right)$ converges uniformly on $E$ to a function $f$. Furthermore $f\left(s_{0}\right)=0$ if and only if $1+f_{n_{0}}\left(s_{0}\right)=0$ for some integer $n_{0}$.

## Proof

Let $P_{n}=\prod_{p=1}^{n}\left(1+f_{p}\right)$. Forn $<m$,

$$
\left|p_{n}-p_{m}\right|=p_{n}\left|1-\prod_{p=n+1}^{m}\left(1+f_{p}\right)\right| . \text { For } 0<\varepsilon<\frac{1}{2}, \text { there exists an }
$$

$\left|1-\prod_{n+1}^{m}\left(1+f_{j}(z)\right)\right| \leq \prod_{n+1}^{m}\left(1+\left|f_{j}(z)\right|\right)-1 \leq e^{\sum_{n+1}^{m}\left|f_{j}(z)\right|}-1 \leq e^{\varepsilon}-1 \leq 2 \varepsilon$,
Then $\left|p_{n}(z)\right| \leq e^{\sum_{j=1}^{n}\left|f_{j}(z)\right|} \leq M<+\infty$, because the series converges uniformly on $E$.
If $m>n \geq n_{0},\left|p_{n}(z)-p_{m}(z)\right| \leq 2 \varepsilon e^{M}$.
The sequence of functions $\left(p_{n}\right)_{n}$ is then a Cauchy's sequence for the topology of uniform convergence, then it converges uniformly on $E$.

Let $f(z)=\prod_{n=0}^{+\infty}\left(1+f_{n}(z)\right)$. For $z \in E$ and $m>n \geq n_{0}$,
$\left|1-\prod_{n_{0}+1}^{m}\left(1+f_{j}(z)\right)\right| \leq 2 \varepsilon$.
Then $\prod_{n_{0}+1}^{m}\left(1+f_{j}(z)\right) \mid \geq 1-2 \varepsilon>0$.
$p_{m}(z)=\left|p_{n_{0}}(z)\right| \prod^{m}\left(1+f_{j}(z)\right)\left|\geq\left|p_{n_{0}}(z)\right|(1-2 \varepsilon)\right.$.
If there exists $z \in E$ such that $f(z)=0$, then $p_{n_{0}}(z)=0$ and there exists $j \leq n_{0}$ such that $1+f_{j}(z)=0$. The converse is false.

## Corollary

With the same notations as in theorem 2.1, if $f\left(z_{0}\right)=0$ and if $f$ is not the zero function ( $f \not \equiv 0$ ), there exists a finite number of index $j \in \mathbb{N}$, such that $1+f_{j}\left(z_{0}\right)=0$.

## Theorem

Let $\left(f_{n}\right)_{n}$ be a sequence of holomorphic functions on a domain $\Omega$. We assume that $f_{n} \not \equiv 0$ whenever $n$ and the series $\sum_{n \geq 1}\left|1-f_{n}(z)\right|$ converges uniformly on any compact subset of $\Omega$, then the infinite product $\prod_{n \geq 1} f_{n}$ converges uniformly on any compact subset of $\Omega$. The limit $f$ is holomorphic on $\Omega$. The function $f \not \equiv 0$ and if $f\left(z_{0}\right)=0$, then $f_{n}\left(z_{0}\right)=0$ for at least one index $n$ and the order of multiplicity of $f$ at $z_{0}$ is the sum of the orders of multiplicities of $z_{0}$ in the different factors.

## Proof

We set $u_{j}(z)=f_{j}(z)-1$ and $p_{n}(z)=\prod_{j=0}^{n} f_{j}(z)$. The sequence
$\left(p_{n}\right)_{n}$ converges uniformly on any compact subset of $\Omega$, then the function $f$ defined by $f=\prod_{j=0}^{+\infty} f_{j}(z)$ is holomorphic on $\Omega$.
For $z \in \Omega,|f(z)| \geq\left|\prod_{j=0}^{n_{0}} f_{j}(z)\right|(1-2 \varepsilon)$ with $n_{0}$ chosen such that
$\sum^{+\infty}\left|1-f_{j}(z)\right|<\varepsilon, \quad 0<\varepsilon<\frac{1}{2}$. The others results are deduced $n_{0}+1$
from the previous theorem.

## Corollary

With the same conditions as in theorem 2.3, $\frac{f^{\prime}}{f}=\sum_{j=0}^{+\infty} \frac{f_{j}^{\prime}}{f_{j}}$ and the series converges uniformly on any compact subset of $\Omega$ which not meeting the set of zeros of $f$.

## Proof

The sequence $\left(p_{n}(z)=\prod_{j=0}^{n} f_{j}(z)\right)_{n}$ converges uniformly on any compact subset of $\Omega$ to $f$. The sequence $\left(p_{n}^{\prime}\right)_{n}$ converges also uniformly on any compact subset of $\Omega$ to $f^{\prime}$. Let $K$ be a compact which not intersects the set of zeros of $f$ and $M>0$ such that on $K,\left|\frac{1}{f}\right| \leq M$ and $\left|p_{n}-f\right| \leq \frac{2}{M}$ for $n$ large enough, then $\left|\frac{1}{p_{n}}\right| \leq 2 M$ on $K$ for $n$ large enough.

$$
\begin{aligned}
& \qquad\left|\frac{p_{n}^{\prime}}{p_{n}}-\frac{f^{\prime}}{f}\right|=\left|\frac{f p_{n}^{\prime}-p_{n} f^{\prime}}{p_{n} f}\right| \leq 2 M^{2}\left|f p_{n}^{\prime}-p_{n} f^{\prime}\right| . \\
& \text { Then the sequence }\left(\frac{p_{n}^{\prime}}{p_{n}}\right)_{n} \text { converge uniformly on } K \text { to } \frac{f^{\prime}}{f} .
\end{aligned}
$$

## Examples

1. Let $a \in \mathbb{C}^{*}$ be such that $|a|<1$. We consider the infinite product $\prod_{n \geq 1}\left(1+a^{n} z\right)$. The series $\sum_{n=1}^{+\infty}\left|a^{n} z\right|$ converges uniformly on any compact subset of $\mathbb{C}$. The set of zeros of $\prod_{n=1}^{+\infty}\left(1+a^{n} z\right)$ is $\left\{\frac{-1}{a^{n}} ; n \in \mathbb{N}\right\}$.
2. Let $f_{n}(z)=\left(1+\frac{z}{n}\right)$. The infinite product $\prod_{n \geq 1} f_{n}(z)$ converges only at 0 .
3. Let $f_{n}(z)=\left(1+\frac{z}{n}\right) e^{-\frac{z}{n}}$. The infinite product $\prod_{n \geq 1} f_{n}(z)$
converges uniformly on any compact subset of $\mathbb{C}$ because $\left|f_{n}(z)-1\right|<\frac{|z|^{2}}{n^{2}} M$, for $n$ large enough.
4. Let $f$ be the function $f(z)=z \prod_{n=1}^{+\infty}\left(1-\frac{z^{2}}{n^{2}}\right)$. $f$ is holomorphic on $\mathbb{C}$ and $f(z)=0$ if and only if $z \in \mathbb{Z}$.
For $n \notin \mathbb{Z}, \frac{f^{\prime}(z)}{f(z)}=1+\sum_{n=1}^{+\infty} \frac{2 z}{z^{2}-n^{2}}=\pi \operatorname{cotan} \pi z$, (cf exercise 1, chapter 6). Then for $z \in \mathbb{C} \backslash \mathbb{Z},\left(\frac{f(z)}{\sin \pi z}\right)^{\prime}=0 \Rightarrow f(z)=C \sin \pi z$ on $\mathbb{C}$. But $\frac{f(z)}{z}=\prod_{n=1}^{+\infty}\left(1-\frac{z^{2}}{n^{2}}\right) \underset{z \rightarrow 0}{\longrightarrow} 1$. It results then $C=\pi$. We deduce the Euler's formula.
5. We consider the geometric series $\sum_{n \geq 1} z^{n}$, where $z=e^{2 i \pi q}$, $\operatorname{Im} q>0$. The series $\sum z^{n}$ is absolutely convergent. We can then define $\prod_{n \geq 1}\left(1+z^{n}\right)$ and $\prod_{n \geq 1}\left(1-z^{n}\right)$. The function $\prod_{n=1}^{+\infty}\left(1+z^{n}\right)=\sum_{n=0}^{+\infty} p(n) z^{n}$ is holomorphic on the unit disc, $p(n)$ is the number of partitions of the integer $n$ (i.e. the number of $\left(n_{1}, \ldots, n_{s}\right)$ such that $\left.n_{1}+\ldots n_{s}=n\right)$.

## Definition

We define the following functions

$$
E_{0}(z)=1-z ; \quad E_{1}(z)=(1-z) e^{z} ; \quad E_{m}(z)=(1-z) e^{\sum_{j=1}^{m} \frac{z^{j}}{j}}
$$

$E_{n}(z)$ is an entire function. 1 is a simple zero of $E_{n} . E_{n}$ is called the $n^{\text {th }}$ elementary Weierstrass's factor.

## Lemma

$$
\text { For }|z|<1,\left|E_{n}(z)-1\right| \leq|z|^{n+1} \text {. }
$$

## Proof

$$
E_{n}^{\prime}(z)=-e^{\sum_{j=1}^{n} \frac{2 j}{j}}+\left(1-z^{n}\right) e^{\sum_{j=1}^{n} \frac{j^{j}}{J}}=-z^{n} e^{\sum_{j=1}^{n} \frac{z^{j}}{J}} .
$$

Since $E_{n}(z)-1=\int_{[0, z]} E_{n}^{\prime}(w) d w, w=t z, t \in[0,1]$, we have

$$
E_{n}(z)-1=z \int_{[0,1]} E_{n}^{\prime}(t z) d t=-z^{n+1} \int_{0}^{1} t^{m} e^{\sum_{j=1}^{n} \frac{\dot{j}_{j} j}{j}} d t .
$$

$$
\begin{aligned}
& E_{n}(1)-1=-\int_{0}^{1} t^{n} e^{\sum_{j=1}^{n} \frac{t^{j}}{j}} d t=-1 \text {, because } E_{n}(1)=0 . \\
& \text { For }|z| \leq 1,\left|1-E_{n}(z)\right| \leq|z|^{n+1} \int_{0}^{1} t^{n} e^{\sum_{j=1}^{n} \frac{j^{j}}{j}} d t \leq|z|^{n+1}
\end{aligned}
$$

## Theorem

Let $\left(a_{n}\right)_{n}$ be a sequence of complex numbers, $a_{n} \neq 0$ and $\lim _{n \rightarrow+\infty}\left|a_{n}\right|=+\infty$. Let $\left(k_{n}\right)_{n}$ be a sequence of positive integers chosen such that $\sum_{n=1}^{+\infty}\left(\frac{r}{r_{n}}\right)^{1+k_{n}}<+\infty$, whenever $r>0$, where $r_{n}=\left|a_{n}\right|$. Then the infinite product $\prod_{n \geq 1} E_{k_{n}}\left(\frac{z}{a_{n}}\right)$ converges uniformly on any compact of $\mathbb{C}$. The function

$$
f(z)=\prod_{n=1}^{+\infty} E_{k_{n}}\left(\frac{z}{a_{n}}\right)
$$

is holomorphic on $\mathbb{C}$ and the set of zeros of $f, Z_{f}$ is the set $\left\{a_{n} ; n \in \mathbb{N}\right\}$. Furthermore the multiplicity of a zero a of $f$ is equal to the number of integers $n$ such that $a_{n}=a$.

## Remark 2 :

For all $r>0$, there exists a rank $n_{0}$ such that for $n \geq n_{0}, \frac{r}{r_{n}}<\frac{1}{2}$ and the condition of convergence in the theorem is realized with $k_{n}=n$.

## Proof

By lemma 3.2, we have $\left|1-E_{k_{n}}\left(\frac{z}{a_{n}}\right)\right| \leq\left|\frac{z}{a_{n}}\right|^{1+k_{n}} \leq\left(\frac{r}{r_{n}}\right)^{1+k_{n}}$. For $|z| \leq r \leq r_{n}$, the series $\sum_{n \geq 1}\left|1-E_{k_{n}}(z)\right|$ converges uniformly on any compact subset $\mathbb{C}$. The theorem is deduced since $E_{k_{n}}\left(\frac{z}{a_{n}}\right)$ has only $a_{n}$ as a simple zero.

## Remark 3 :

If $\sum_{n=1}^{+\infty} \frac{1}{r_{n}}<+\infty$, we can take $k_{n}=0$. The canonical product is

$$
f(z)=\prod_{n=1}^{+\infty}\left(1-\frac{z}{a_{n}}\right)
$$

If $\prod_{n=1}^{+\infty} \frac{1}{\left(r_{n}\right)^{2}}<+\infty$, we can take $k_{n}=1$ and
$f(z)=\prod_{n=1}^{+\infty}\left(1-\frac{z}{a_{n}}\right) e^{\frac{z}{a_{n}}}$.

## Theorem (Weierstrass's Factorization Theorem)

Let $f$ be an entire function and $A=\left\{a_{1}, \ldots, a_{n}, \ldots\right\}$ the zeros of $f$ repeated as far as their order of multiplicities. Then there exists an entire function $g$ and a sequence of integers $\left(k_{n}\right)_{n}$ such that $f(z)=e^{g(z)} \prod_{n=1}^{+\infty} E_{k_{n}}\left(\frac{z}{a_{n}}\right)$. This factorization is not unique because there exist an infinite possible choice of $k_{n}$.

## Proof

If the sequence $\left(a_{n}\right)_{n}$ is infinite, then $\lim _{n \rightarrow+\infty}\left|a_{n}\right|=+\infty$.
Let $h$ be a Weierstrass's infinite product given in the previous theorem with the sequence $\left(a_{n}\right)_{n}$. The function $\frac{f}{h}$ is holomorphic on $\mathbb{C}$ without zeros. $\mathbb{C}$ is simply connected, then there exists $g \in \mathcal{H}(\mathbb{C})$ such that $\frac{f}{h}=e^{g}$.

## Theorem

let $\Omega$ be an open subset of $\mathbb{C}$ and $A$ a discrete closed subset in $\Omega$. For all mapping $a: \stackrel{m}{\longmapsto} m(a)$ from $A$ with values in $\mathbb{N}$, there exists a function $f \in \mathcal{H}(\Omega)$ such that $\forall a \in A$, a is a zero of $f$ of order $m(a)$ and $Z_{f}=A=\{z \in \Omega ; f(z)=0\}$.

## Proof

We can assume that $\Omega \neq \mathbb{C}$. For the proof it is useful to consider a sequence $\left(a_{n}\right)_{n}$ such that whenever $n, a_{n} \in A$ and such that whenever $a \in A, \#\left\{n \in \mathbb{N} ; a=a_{n}\right\}=m(a)$.
First case The sequence $\left(a_{n}\right)_{n}$ is bounded.
Let $b_{n} \in \Omega^{c}$ such that $d\left(a_{n}, \Omega^{c}\right)=\left|b_{n}-a_{n}\right|$. Then necessary

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left|a_{n}-b_{n}\right|=0 \tag{1}
\end{equation*}
$$

if not the sequence $\left(a_{n}\right)_{n}$ which is bounded has a cluster point (accumulation point) in $\Omega$.
Let's prove that the function defined by the infinite product $\prod_{n \geq 1} E_{n}\left(\frac{a_{n}-b_{n}}{z-b_{n}}\right)$ is a solution to the problem. Let $K$ be a compact $n \geq 1$
subset of $\Omega$,

$$
\begin{equation*}
\left|z-b_{n}\right| \geq \inf _{w \in K, \delta \notin \Omega}|w-\delta|=d\left(K, \Omega^{c}\right)>0 \quad \forall z \in K \tag{2}
\end{equation*}
$$

Since $\lim _{n \rightarrow+\infty}\left|a_{n}-b_{n}\right|=0$, there exists an integer $N$ such that for $n \geq N$

$$
\begin{equation*}
\left|a_{n}-b_{n}\right| \leq \frac{1}{2} d\left(K, \Omega^{c}\right) . \tag{3}
\end{equation*}
$$

For $n \geq N$ and $z \in K$ and by equations (2) and (3),
$\left|z-b_{n}\right| \geq 2\left|a_{n}-b_{n}\right|$, let $\left|\frac{a_{n}-b_{n}}{z-b_{n}}\right| \leq \frac{1}{2}$. By lemma 3.2,
$\left|E_{n}\left(\frac{a_{n}-b_{n}}{z-b_{n}}\right)-1\right| \leq\left(\frac{1}{2}\right)^{n+1}$ for $n \geq N$ and $z \in K$. Which proves
the theorem in the case where the sequence $\left(a_{n}\right)_{n}$ is bounded.

We prove now that $\lim _{|z| \rightarrow+\infty} f(z)=1$ in the case where the open subset $\Omega$ is not bounded.
Since the sequence $\left(a_{n}\right)_{n}$ is bounded, the sequence $\left(b_{n}\right)_{n}$ is also bounded. (Because $\lim _{n \rightarrow+\infty} a_{n}-b_{n}=0$ ). Let $M>0$ be an upper bound of $\left(\left|a_{n}\right|\right)_{n}$ and of $\left(\left|b_{n}\right|\right)_{n}$. For $|z|>5 M$, we have

$$
\left|\frac{a_{n}-b_{n}}{z-b_{n}}\right| \leq \frac{\left|a_{n}\right|+\left|b_{n}\right|}{|z|-\left|b_{n}\right|} \leq \frac{2 M}{5 M-M}=\frac{1}{2}
$$

in such a way for $|z|>5 M$, we have $\left|E_{n}\left(\frac{a_{n}-b_{n}}{z-b_{n}}\right)-1\right| \leq \frac{1}{2^{n+1}}$, whenever $n$. The infinite product converges uniformly for $|z|>5 M$ and since $\lim _{|z| \rightarrow+\infty} E_{n}\left(\frac{a_{n}-b_{n}}{z-b_{n}}\right)=E_{n}(0)=1$, we deduce that $\lim _{z \mid \rightarrow+\infty} f(z)=1$.

Second case The sequence $\left(a_{n}\right)_{n}$ is not bounded. Let $a \in \Omega$ different of $a_{n}$, whenever $n$. There exists $\varepsilon>0$ such that $\left|a_{n}-a\right|>\varepsilon$. We consider the function $g: \mathbb{C} \backslash\{a\} \longrightarrow \mathbb{C}$ defined by $g(z)=\frac{1}{z-a}$. The function $g$ is holomorphic and injective. The sequence $\left(g\left(a_{n}\right)\right)_{n}$ is bounded in the open subset $g(\Omega \backslash\{a\})=\Omega^{\prime}$. There exists a holomorphic function $f$ on $\Omega^{\prime}$ which vanishes only at the points $\left(g\left(a_{n}\right)\right)_{n}$ with multiplicity $m\left(a_{n}\right)$ and $\lim _{|z| \rightarrow+\infty} f(z)=1$. The function $f \circ g$ is holomorphic on $\Omega$ and $a$ is a removable singularity because $\lim _{z \rightarrow a} f \circ g(z)=1$. The function $f \circ g$ gives an answer to the problem.

## Corollary

Every meromorphic function on $\Omega$ is the quotient of two holomorphic functions on $\Omega$.

## Proof

Let $f$ be a meromorphic function and let $\left(a_{n}\right)_{n}$ be the sequence (may be finite) of the poles of $f$ and $m_{n}$ its multiplicity. By the previous theorem, there exists a holomorphic function $g$ on $\Omega$ such $a_{n}$ is a zero of order $m_{n}$ of $g$. The function $h=f g$ is then
holomorphic one $\Omega$ and $f=\frac{h}{g}$.

We consider the function $f$ defined by

$$
f(z)=\prod_{j=1}^{+\infty}\left(1+\frac{z}{j}\right) e^{\frac{-z}{j}}
$$

The infinite product $\prod_{j>1}\left(1+\frac{z}{j}\right) e^{\frac{-z}{j}}$ defines an entire function $f$ such that $-n$ is a simple zero, whenever $n \in \mathbb{N}$.

## Lemma

There exists a constant $\gamma$ called the Euler's constant such that $f(z-1)=z e^{\gamma} f(z)$.
$\left(\gamma=\lim _{n \rightarrow+\infty}\left(\sum_{j=1}^{n} \frac{1}{j}-\ln (n+1)\right) \approx 0,5772156649\right)$.

## Proof

The function $g(z)=f(z-1)$ is holomorphic on $\mathbb{C}$ and every non positive integer $(-n), n \in \mathbb{N}$ is a simple zero, then the functions $z f(z)$ and $g(z)$ have the same zeros with the same multiplicity. There exists then an entire function $h$ such that

$$
z f(z) e^{h(z)}=g(z)=\lim _{n \rightarrow+\infty} \prod_{k=1}^{n}\left(1+\frac{z-1}{k}\right) e^{\frac{-z+1}{k}} .
$$

For $k \neq 1$,

$$
\begin{aligned}
&\left(1+\frac{z-1}{k}\right) e^{-\frac{z-1}{k}}=\left(1+\frac{z}{k-1}\right) \frac{k-1}{k} e^{\frac{-z}{k}+\frac{1}{k}}=\left(1+\frac{z}{k-1}\right) e^{-\frac{z}{k}} e^{\frac{1}{k}+\ln \frac{k-1}{k}} \\
& \prod_{k=1}^{n}\left(1+\frac{z-1}{k}\right) e^{\frac{-z+1}{k}}=z e^{-(z-1)} \prod_{k=1}^{n-1}\left(1+\frac{z}{k}\right) e^{-\frac{z}{k+1}} e^{\frac{1}{k+1}+\ln \frac{k}{k+1}} \\
&=z e^{-z}\left(\prod_{k=1}^{n-1}\left(1+\frac{z}{k}\right) e^{-\frac{z}{k}}\right)\left(\prod_{k}^{n-1} e^{\frac{z}{k}}\right)\left(\prod_{k=1}^{n-1} e^{\frac{-z}{k+1}}\right)\left(\prod_{k=1}^{n-1}\right. \\
&=z e^{-\frac{z}{n}} e^{\sum_{j=1}^{n} \frac{1}{j}-\ln (n+1)}\left(\prod_{n=1}^{n-1}\left(1+\frac{z}{k}\right) e^{-\frac{z}{k}}\right) \xrightarrow[n \rightarrow+\infty]{\longrightarrow z}
\end{aligned}
$$

We prove that the sequence $\left(\sum_{j=1}^{n} \frac{1}{j}-\ln (n+1)\right)_{n}$ has a limit. $\sum_{j=1}^{n} \frac{1}{j}-\ln (n+1)=\sum_{j=1}^{n}\left(\frac{1}{j}-\ln \left(\frac{j+1}{j}\right)\right)$. But for $x>0$,
$0<\frac{x}{1+x}<x$, then $\int_{0}^{x} \frac{t}{1+t} d t<\frac{x^{2}}{2}$.
Furthermore $0<x-\ln (1+x) \leq \frac{x^{2}}{2}$. Then $0<\frac{1}{j}-\ln \frac{j+1}{j}<\frac{1}{2 j^{2}}$ which is the general term of a convergent series.

## Definition

The function 「 called the Gamma Euler's function is the meromorphic function defined by

$$
\Gamma(z)=\frac{1}{z e^{\gamma z} f(z)}, \quad \frac{1}{\Gamma(z)}=z e^{\gamma z} \prod_{j=1}^{+\infty}\left(1+\frac{z}{j}\right) e^{\frac{-z}{j}} .
$$

Any non positive integer is a simple pole of $\Gamma$, then the function $\frac{1}{\Gamma}$ is an entire function such that any non positive integer is a simple zero.

## Theorem

$$
\begin{gathered}
\Gamma(z+1)=z \Gamma(z) ; \quad \forall z \notin-\mathbb{N} . \\
\Gamma(1)=1, \quad \Gamma(n+1)=n!, \forall n \in \mathbb{N} . \\
\Gamma(z) \Gamma(1-z)=\frac{\pi}{\sin \pi z} \text { Complement formula. } \\
\Gamma(z)=\lim _{n \rightarrow+\infty} \frac{n!n^{z}}{z(z+1) \ldots(z+n)}, \quad n^{z}=e^{z \ln n} . \\
\text { If } \operatorname{Re} z>0, \quad \Gamma(z)=\int_{0}^{+\infty} e^{-t} t^{z-1} d t .
\end{gathered}
$$

## Proof

1. 

$$
\begin{aligned}
\frac{1}{\Gamma(z+1)}= & (z+1) e^{\gamma(z+1)} f(z+1)=(z+1) e^{\gamma z} e^{\gamma} f(z+1) \\
& =e^{\gamma z}(z+1) e^{\gamma} f(z+1)=e^{\gamma z} f(z)=\frac{1}{z \Gamma(z)}
\end{aligned}
$$

2. $\Gamma(1)=\frac{1}{e^{\gamma} f(1)}$ and $f(1) e^{\gamma}=f(0)=1$, then $f(1)=e^{-\gamma}$,
$\Gamma(1)=1, \Gamma(z+1)=z \Gamma(z)$ and $\Gamma(n+1)=n!\Gamma(1)=n!$.
3. 

$$
\begin{aligned}
\frac{1}{\Gamma(z) \Gamma(1-z)} & =\frac{1}{-z \Gamma(z) \Gamma(-z)} \\
& =\frac{-1}{z} e^{\gamma z} f(z)(-z) e^{-\gamma z} f(-z) \\
& =z f(z) f(-z)=\frac{\sin \pi z}{\pi}
\end{aligned}
$$

then $\Gamma\left(\frac{1}{2}\right)=\frac{\sqrt{\pi}}{2}$.
An other method
We compare $\sin \pi z$ and $\frac{1}{\Gamma(z) \Gamma(1-z)}$. Since the set of zeros of $\sin \pi z$ is $\mathbb{Z}$ and are simple zeros. The same for the function 1 $\frac{1}{\Gamma(z) \Gamma(1-z)}$, there exists an entire function $h$ such that

$$
\begin{equation*}
\frac{1}{\Gamma(z) \Gamma(1-z)} e^{h(z)}=\frac{\sin \pi z}{\pi} \tag{4}
\end{equation*}
$$

But we have

$$
\begin{gather*}
\frac{\sin \pi z}{\pi}=z \prod_{\substack{-\infty \\
k \neq 0}}^{+\infty}\left(1+\frac{z}{k}\right) e^{-\frac{z}{k}}  \tag{5}\\
\frac{1}{\Gamma(z) \Gamma(1-z)}=z e^{\gamma z} \prod_{k=1}^{+\infty}\left(1+\frac{z}{k}\right) e^{-\frac{z}{k}}(1-z) e^{\gamma(1-z)} \prod_{k=1}^{+\infty}\left(1+\frac{1-z}{k}\right) e^{\left.-\frac{1-z}{k}\right)}
\end{gather*}
$$

In taking the logarithmic derivative of (4) and (5) we find

$$
\begin{aligned}
& \frac{\pi \cos \pi z}{\sin \pi z}=\frac{1}{z}+\sum_{\substack{-\infty \\
k \neq 0}}^{+\infty}\left(\frac{1}{z+k}-\frac{1}{k}\right) \\
& \frac{\left(\frac{1}{\Gamma(z)}\right)^{\prime}}{\frac{1}{\Gamma(z)}}=\frac{1}{z}+\gamma-\sum_{k=1}^{+\infty}\left(\frac{1}{z+k}-\frac{1}{k}\right)
\end{aligned}
$$

$\left(\frac{1}{((1-2)}\right)^{\prime}$

$$
\begin{aligned}
h^{\prime}(z)= & \frac{1}{z}+\sum_{\substack{-\infty \\
k \neq 0}}^{+\infty}\left(\frac{1}{z+k}-\frac{1}{k}\right)-\left(\frac{1}{z}+\gamma+\sum_{k=1}^{+\infty}\left(\frac{1}{z+k}-\frac{1}{k}\right)\right) \\
& -\left(\frac{-1}{1-z}-\gamma-\sum_{k=1}^{+\infty}\left(\frac{1}{1-z+k}-\frac{1}{k}\right)\right) \\
= & \sum_{-\infty}^{-1}\left(\frac{1}{z+k}-\frac{1}{k}\right)+\left(\frac{1}{1-z}+\sum_{k=1}^{+\infty}\left(\frac{1}{1-z+k}-\frac{1}{k}\right)\right) \\
= & \sum_{-\infty}^{-1}\left(\frac{1}{z+k}-\frac{1}{k}\right)-\frac{1}{z-1}-\sum_{k=1}^{+\infty}\left(\frac{1}{z-1-k}+\frac{1}{k}\right) .
\end{aligned}
$$

$\frac{1}{z-1-k}+\frac{1}{k}=\frac{1}{z-1-k}-\frac{1}{k+1}+\frac{1}{k}-\frac{1}{k+1}$. Then
$h^{\prime}(z)=\sum_{k=1}^{+\infty}\left(\frac{1}{z-k}+\frac{1}{k}\right)-\frac{1}{z-1}-\sum_{k=2}^{+\infty}\left(\frac{1}{z-k}+\frac{1}{k}\right)-\sum_{k=1}^{+\infty}\left(\frac{1}{k}-\frac{1}{k+1}\right)$
and $h^{\prime}=0$. Since $\lim _{z \rightarrow 0} h(z)=0$, then $h=0$ and

$$
\frac{1}{\Gamma(z) \Gamma(1-z)}=\frac{\sin \pi z}{\pi} .
$$

4. $\frac{1}{\Gamma(z)}=z e^{\gamma z} f(z)$ and
$\lim _{n \rightarrow+\infty} z e^{z\left(\sum_{k=1}^{n} \frac{1}{k}-\ln n\right)} \prod_{k=1}^{n}\left(1+\frac{z}{k}\right) e^{\frac{-z}{k}}=\frac{1}{\Gamma(z)}$. The convergence is uniform one any compact of $\mathbb{C} \backslash(-\mathbb{N})$.

$$
\frac{n}{n^{z}} \prod_{k=1}^{n} \frac{z+k}{k}=\frac{z(z+1) \ldots(z+n)}{n^{z} n!}, \text { then }
$$

$$
\frac{1}{\Gamma(z)}=\lim _{n \rightarrow+\infty} \frac{z}{n^{z} n!}(z+1) \ldots(z+n)
$$

5. If $\operatorname{Re} z>0$, the integral $\int_{0}^{+\infty} t^{z-1} e^{-t} d t$ is convergent and defines a holomorphic function on $\{z \in \mathbb{C} ; \operatorname{Rez}>0\}$.

## Lemma

The sequence $\left(f_{n}\right)_{n}$ defined by $f_{n}(z)=\int_{0}^{n}\left(1-\frac{t}{n}\right)^{n} t^{z-1} d t$ converges to $\int_{0}^{+\infty} e^{-t} t^{z-1} d t$, whenever $\operatorname{Rez}>0$.

## Lemma

$\lim _{n \rightarrow+\infty} f_{n}(z)=\Gamma(z)$, whenever $\operatorname{Re} z>0$.

## Proof of lemma 4.4

For $0<t<n, 0<e^{-t}-\left(1-\frac{t}{n}\right)^{n}<\frac{t^{2}}{2 n}$. According to the convergence of the integral $\int_{0}^{+\infty} e^{-t} t^{z-1} d t$, for $\operatorname{Re} z>0$, then $\forall \varepsilon>0, \exists n_{0}$ such that if $n \geq n_{0}$

$$
\left|\int_{n}^{+\infty} e^{-t} t^{z-1} d t\right| \leq \int_{n}^{+\infty} e^{-t} t^{x-1} d t<\frac{\varepsilon}{3},
$$

with $z=x+\mathrm{i} y$.

If $n \geq n_{0}$,

$$
\begin{aligned}
\int_{0}^{+\infty} e^{-t} t^{z-1} d t-f_{n}(z) & =\int_{0}^{n_{0}}\left(e^{-t}-\left(1-\frac{t}{n}\right)^{n}\right) t^{z-1} d t+\int_{n_{0}}^{n}\left(e^{-t}\right. \\
& +\int_{n}^{+\infty} e^{-t} t^{z-1} d t
\end{aligned}
$$

$$
\left|\int_{0}^{n_{0}}\left(e^{-t}-\left(1-\frac{t}{n}\right)^{n}\right) t^{z-1} d t\right| \leq \frac{1}{2 n} \int_{0}^{n_{0}} t^{x+1} d t \text {, then there exists }
$$

$$
n_{1} \text { such that, whenever } n \geq n_{1} \geq n_{0},
$$

$$
\left|\int_{0}^{n_{0}}\left(e^{-t}-\left(1-\frac{t}{n}\right)^{n}\right) t^{z-1} d t\right| \leq \frac{\varepsilon}{3}
$$

$$
\left|\int_{n_{0}}^{n}\left(e^{-t}-\left(1-\frac{t}{n}\right)^{n}\right) t^{z-1} d t\right| \leq \int_{n_{0}}^{+\infty} e^{-t} t^{x-1} d t \leq \frac{\varepsilon}{3} .
$$

$$
\left|\int_{n}^{+\infty} e^{-t} t^{z-1} d t\right| \leq \frac{\varepsilon}{3} \text {, then the sequence }\left(f_{n}(z)\right)_{n} \text { converges to }
$$

$$
\int_{0}^{+\infty} e^{-t} t^{z-1} d t
$$

## Proof of lemma 4.5

We introduce a new variable $\tau=\frac{t}{n}$. An integration by part of the integral yields

$$
f_{n}(z)=n^{z} \int_{0}^{1}(1-\tau)^{n} \tau^{z-1} d \tau=\frac{n^{z}}{z} n \int_{0}^{1}(1-\tau)^{n-1} \tau^{z} d \tau
$$

We repeat the same operation, we find

$$
f_{n}(z)=\frac{n^{z} n}{z(z+1) \ldots(z+n-1)} \int_{0}^{1} \tau^{z+n-1} d \tau=\frac{n^{z} n}{z(z+1) \ldots(z+n)} .
$$

## Theorem

$\Gamma\left(\frac{1}{2}\right) \Gamma(2 z)=2^{2 z-1} \Gamma(z) \Gamma\left(z+\frac{1}{2}\right)$.
Proof

$$
\begin{aligned}
\frac{d}{d z}\left(\frac{\Gamma^{\prime}(z)}{\Gamma(z)}\right)+\frac{d}{d z}\left(\frac{\Gamma^{\prime}\left(z+\frac{1}{2}\right)}{\Gamma\left(z+\frac{1}{2}\right)}\right) & =\sum_{n=0}^{+\infty} \frac{1}{(n+z)^{2}}+\sum_{n=0}^{+\infty} \frac{1}{\left(n+z+\frac{1}{2}\right)^{2}} \\
& =4\left(\sum_{n=0}^{+\infty} \frac{1}{(2 n+2 z)^{2}}+\sum_{n=0}^{+\infty} \frac{1}{(2 n+2 z+1}\right. \\
& =4 \sum_{n=0}^{+\infty} \frac{1}{(n+2 z)^{2}}=2 \frac{d}{d z}\left(\frac{\Gamma^{\prime}(2 z)}{\Gamma(2 z)}\right) .
\end{aligned}
$$

This yields that $\Gamma(z) \Gamma\left(z+\frac{1}{2}\right)=e^{a z+b} \Gamma(2 z)$.
For $z=\frac{1}{2}, \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}, \Gamma(1)=\Gamma(2)=1, \Gamma\left(\frac{3}{2}\right)=\frac{1}{2} \Gamma\left(\frac{1}{2}\right)=\sqrt{\frac{\pi}{2}}$, then $\frac{a}{2}+b=\frac{1}{2} \ln \pi, a+b=\frac{1}{2} \ln \pi-\ln 2 \Rightarrow a=-2 \ln 2$, $b=\frac{1}{2} \ln \pi+\ln 2$. Then we find the Stirling formula

$$
\begin{equation*}
\Gamma\left(\frac{1}{2}\right) \Gamma(2 z)=2^{2 z-1} \Gamma(z) \Gamma\left(z+\frac{1}{2}\right) . \tag{6}
\end{equation*}
$$

## Proposition

$\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}=\int_{0}^{+\infty} \frac{t^{y-1}}{(1+t)^{x+y}} d t$, whenever $y>0$ and $x>0$.
Proof
$\Gamma(x) \Gamma(y)=\int_{0}^{+\infty} t^{x-1} e^{-t} d t \int_{0}^{+\infty} s^{y-1} e^{-s} d s$, for all $x>0$ and
$y>0$. The change of variable $s=t v$ yields
$\Gamma(x) \Gamma(y)=\int_{0}^{+\infty} v^{y-1}\left(\int_{0}^{+\infty} t^{x+y-1} e^{-t(1+v)} d t\right) d v$. If we set
$u=t(1+v)$, we have
$\Gamma(x) \Gamma(y)=\int_{0}^{+\infty} v^{y-1}\left(\int_{0}^{+\infty} u^{x+y-1} e^{-u}(1+v)^{-x-y} d u\right) d v=\Gamma(x+y) \int_{0}$

## Remarks 4 :

(1) For $x=y=\frac{1}{2}$ and the change of variable $v=\tan ^{2} \theta$, we deduce

$$
\left[\Gamma\left(\frac{1}{2}\right)\right]^{2}=2 \int_{0}^{\frac{\pi}{2}} d \theta=\pi \Rightarrow \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi} .
$$

(2) If $y=1-x$,

$$
\Gamma(x) \Gamma(1-x)=\int_{0}^{+\infty} \frac{u^{-x}}{1+u} d u=\frac{\pi}{\sin (1-x) \pi}=\frac{\pi}{\sin (\pi x)}, \quad \text { for } 0<
$$

because $\int_{0}^{+\infty} \frac{x^{a-1}}{1+x} d x=\frac{\pi}{\sin \pi a}$, for $0<a<1$, then
$\Gamma(x) \Gamma(1-x)=\frac{\pi}{\sin \pi x}$, for $0<x<1$.
3.

$$
\begin{equation*}
\ln (\Gamma(n))=\left(n-\frac{1}{2}\right) \ln n-n+c+o(1) \tag{7}
\end{equation*}
$$

where $c$ is a constant.

Indeed, $\Gamma(n+1)=n!$, for $n \in \mathbb{N}, \ln n!=\sum_{j=1}^{n} \ln j$,
$\int_{j-\frac{1}{2}}^{j+\frac{1}{2}} \ln t d t=\int_{0}^{\frac{1}{2}}(\ln (j+t)+\ln (j-t)) d t=\int_{0}^{\frac{1}{2}}\left(\ln j^{2}+\ln \left(1-\frac{t^{2}}{j^{2}}\right)\right) d t=\ln J$
where $c_{j}=O\left(\frac{1}{j^{2}}\right)$. Then

$$
\ln (\Gamma(n))=\ln (n-1)!=\int_{\frac{1}{2}}^{n-\frac{1}{2}} \ln t d t-\sum_{j=1}^{n-1} c_{j}-\frac{1}{2} \ln \frac{1}{2}+\frac{1}{2}=\left(n-\frac{1}{2}\right) \ln n-n+
$$

## Lemma

For $n$ large enough

$$
\frac{\Gamma(n)}{\Gamma(n+a)} \approx n^{-a}, \quad \text { for } a>0
$$

## Proof

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} \frac{n^{a} \Gamma(a) \Gamma(n)}{\Gamma(a+n)} & =\lim _{n \rightarrow+\infty} n^{a} \int_{0}^{1} t^{a-1}(1-t)^{n-1} d t \\
& =\lim _{n \rightarrow+\infty} \int_{0}^{n} u^{a-1}\left(1-\frac{u}{n}\right)^{n-1} d u=\int_{0}^{+\infty} u^{a-1} e^{-u}
\end{aligned}
$$

Then $\lim _{n \rightarrow+\infty} \frac{n^{a} \Gamma(n)}{\Gamma(a+n)}=1$.
Remark 5 :
If $x$ is not an integer, we set $x=n+a$, with $0<a<1$. We find for $n$ large enough

$$
\Gamma(n+a)=\Gamma(x) \approx \Gamma(n) n^{a} .
$$

In use of the identity (7), we have

$$
\begin{aligned}
\ln \Gamma(x)=\ln \Gamma(n+a) & =\ln \Gamma(n)+a \ln n+o(1) \\
& =\left(n-\frac{1}{2}\right) \ln n-n+c_{1}+a \ln n+o(1) \\
& =\left(x-\frac{1}{2}\right) \ln x-x+c_{2}+o(1) .
\end{aligned}
$$

We intend to compute the constant $c_{2}$. By (6), we have

$$
\Gamma(2 x) \Gamma\left(\frac{1}{2}\right)=2^{2 x-1} \Gamma(x) \Gamma\left(x+\frac{1}{2}\right) .
$$

Furthermore

$$
\ln \left(\Gamma(2 x) \Gamma\left(\frac{1}{2}\right)\right)=\left(2 x-\frac{1}{2}\right) \ln 2 x-2 x+c+o(1)+\ln \sqrt{\pi}
$$

and

Therefore $\ln \sqrt{\pi}+\frac{1}{2} \ln 2+o(1)=c-\frac{1}{2}+x \frac{1}{2 x}+o(1)=c+o(1)$. Then $c=\ln \sqrt{2 \pi}$ and $\ln \Gamma(x)=\left(x-\frac{1}{2}\right) \ln x-x+\ln \sqrt{2 \pi}+o(1)$. We deduce

$$
\begin{gather*}
\Gamma(x)=x^{x-\frac{1}{2}} e^{-x} \sqrt{2 \pi}(1+o(1))  \tag{8}\\
n!=(n+1)^{n+\frac{1}{2}} e^{-n-1} \sqrt{2 \pi}(1+o(1)) . \tag{9}
\end{gather*}
$$

## Remark 6 :

$\forall z \in \mathbb{C} \backslash(-\mathbb{N}),\left(\frac{\Gamma^{\prime}(z)}{\Gamma(z)}\right)^{\prime}=\sum_{k=0}^{+\infty} \frac{1}{(k+z)^{2}}$. Then if $z=x>0$, the previous formula shows that the function $\ln \Gamma$ is convex on $] 0,+\infty[$ (i.e. $\Gamma$ is logarithmic convex on $] 0,+\infty[$ ).

## Theorem

Let $f:] 0,+\infty[\longrightarrow \mathbb{R}$ be a convex function such that
(1) $f(1)=0$.
(2) $e^{f(x+1)}=x e^{f(x)} \forall x>0$, then $e^{f}$ is equal to the restriction of the function $\Gamma$ on $] 0,+\infty[$.

## Proof

Let $1<x<2$ and $n \in \mathbb{N}$. From the second property,

$$
f(x+n+1)=f(x)+\sum_{k=0}^{n} \ln (x+k)
$$

and

$$
f(x+n+1)=f(n+1)+f(x)+\ln x+\sum_{k=0}^{n-1} \ln \left(1+\frac{x}{k+1}\right)
$$

because $f(n+1)=\ln n$ !. We use the convexity of $f$, we find

$$
f(n+2)-f(n+1) \leq \frac{f(x+n+1)-f(1+n)}{x} \leq \frac{f(n+3)-f(n+1)}{2} \leq f(
$$

Then

$$
f(x)+\left(\gamma x+\ln x+\sum_{k=0}^{n-1}\left(\ln \left(1+\frac{x}{k+1}\right)-\left(\frac{x}{k+1}\right)\right)\right)
$$

is between the two following values $\left(\gamma+\ln (n+1)-\sum_{k=0}^{n-1} \frac{1}{k+1}\right) x$
and $\left(\gamma+\ln (n+2)-\sum_{k=0}^{n-1} \frac{1}{k+1}\right) x$, this which yields that
$f(x)=-\gamma x-\ln x-\sum_{k=0}^{\infty}\left(\ln \left(1+\frac{x}{k+1}\right)-\frac{x}{k+1}\right)$ and then $f(x)=\ln \Gamma(x)$ for $1<x<2$ and the result is deduced by the

