Chapter 1

Defining and Collecting Data

Objectives

In this chapter you learn:

- To understand issues that arise when defining variables.
- How to define variables.
- To understand the different measurement scales.
- How to collect data.
- To identify different ways to collect a sample.
- To understand the types of survey errors.

Classifying Variables By Type

DCOVA

- Categorical (qualitative) variables take categories as their values such as "yes", "no", or "blue", "brown", "green".
- Numerical (quantitative) variables have values that represent a counted or measured quantity.
- Discrete variables arise from a counting process.
- Continuous variables arise from a measuring process.

Examples of Types of Variables

Question

Responses

Variable Type

Do you have a Facebook profile?

Yes or No

How many text messages have you sent in the past three days?
How long did the mobile app update take to download?

Measurement Scales

DCOVA

A nominal scale classifies data into distinct categories in which no ranking is implied.

Categorical Variables
 Categories

Do you have a Facebook profile? \longleftrightarrow Yes, No

Type of investment \longleftrightarrow Growth, Value, Other
Cellular Provider
AT\&T, Sprint, Verizon,
Other, None

Measurement Scales (con’t.)

DCOVA
An ordinal scale classifies data into distinct categories in which ranking is implied.

Categorical Variable

Student class designation

Product satisfaction

Faculty rank

Standard \& Poor's bond ratings

Student Grades

Ordered Categories

Freshman, Sophomore, Junior, Senior

Very unsatisfied, Fairly unsatisfied, Neutral, Fairly satisfied, Very satisfied

Professor, Associate Professor, Assistant Professor, Instructor
$A A A, A A, A, B B B, B B, B, C C C, C C$, C, DDD, DD, D

A, B, C, D, F

Measurement Scales (con’t.)

DCOVA

- An interval scale is an ordered scale in which the difference between measurements is a meaningful quantity but the measurements do not have a true zero point.
- A ratio scale is an ordered scale in which the difference between the measurements is a meaningful quantity and the measurements have a true zero point.

Interval and Ratio Scales

DCOVA

Numerical Variable

Types of Variables

DCOVA

Variables

Nominal

Examples:

- Marital Status
- Political Party
- Eye Color
(Defined Categories)

Examples: Ratings

- Good, Better, Best
- Low, Med, High
(Ordered Categories)

Ordinal

Discrete

Examples:

- Number of Children
- Defects per hour (Counted items)

Examples:

- Weight
- Voltage
(Measured
characteristics)

Data Is Collected From Either A Population or A Sample

DCOVA

POPULATION

A population contains all of the items or individuals of interest that you seek to study.

SAMPLE
A sample contains only a portion of a population of interest.

Population vs. Sample

DCOVA

Population

Sample

All the items or individuals about which you want to reach conclusion(s).

A portion of the population of items or individuals.

A Population of Size 40
A Sample of Size 4

Collecting Data Via Sampling Is Used When Doing So Is

- Less time consuming than selecting every item in the population.
- Less costly than selecting every item in the population.
- Less cumbersome and more practical than analyzing the entire population.

Parameter or Statistic?

DCOVA

- A population parameter summarizes the value of a specific variable for a population.
- A sample statistic summarizes the value of a specific variable for sample data.

Sources Of Data Arise From

 The Following Activities- Capturing data generated by ongoing business activities.
- Distributing data compiled by an organization or individual.
- Compiling the responses from a survey.
- Conducting a designed experiment and recording the outcomes.
- Conducting an observational study and recording the results.

Examples of Data Collected From Ongoing Business Activities

- A bank studies years of financial transactions to help them identify patterns of fraud.
- Economists utilize data on searches done via Google to help forecast future economic conditions.
- Marketing companies use tracking data to evaluate the effectiveness of a web site.

Examples Of Data Distributed By An Organization or Individual

- Financial data on a company provided by investment services.
- Industry or market data from market research firms and trade associations.
- Stock prices, weather conditions, and sports statistics in daily newspapers.

Examples of Survey Data

DCOVA

- A survey asking people which laundry detergent has the best stain-removing abilities.
- Political polls of registered voters during political campaigns.
- People being surveyed to determine their satisfaction with a recent product or service experience.

Examples of Data From A Designed Experiment

- Consumer testing of different versions of a product to help determine which product should be pursued further.
- Material testing to determine which supplier's material should be used in a product.
- Market testing on alternative product promotions to determine which promotion to use more broadly.

Examples of Data Collected From Observational Studies

DCOVA

- Market researchers utilizing focus groups to elicit unstructured responses to open-ended questions.
- Measuring the time it takes for customers to be served in a fast food establishment.
- Measuring the volume of traffic through an intersection to determine if some form of advertising at the intersection is justified.

Observational Studies \& Designed Experiments Have A Common Objective

- Both are attempting to quantify the effect that a process change (called a treatment) has on a variable of interest.
- In an observational study, there is no direct control over which items receive the treatment.
- In a designed experiment, there is direct control over which items receive the treatment.

Sources of Data

DCOVA

- Primary Sources: The data collector is the one using the data for analysis:
- Data from a political survey.
- Data collected from an experiment.
- Observed data.
- Secondary Sources: The person performing data analysis is not the data collector:
- Analyzing census data.
- Examining data from print journals or data published on the Internet.

A Sampling Process Begins With A Sampling Frame

- The sampling frame is a listing of items that make up the population.
- Frames are data sources such as population lists, directories, or maps.
- Inaccurate or biased results can result if a frame excludes certain groups or portions of the population.
- Using different frames to generate data can lead to dissimilar conclusions.

Types of Samples

DCOVA

Types of Samples: Nonprobability Sample

- In a nonprobability sample, items included are chosen without regard to their probability of occurrence.
- In convenience sampling, items are selected based only on the fact that they are easy, inexpensive, or convenient to sample.
- In a judgment sample, you get the opinions of preselected experts on the subject matter.

Types of Samples:
 Probability Sample

- In a probability sample, items in the sample are chosen on the basis of known probabilities.

Probability Sample: Simple Random Sample

- Every individual or item from the frame has an equal chance of being selected.
- Selection may be with replacement (selected individual is returned to frame for possible reselection) or without replacement (selected individual isn't returned to the frame).
- Samples obtained from table of random numbers or computer random number generators.

Selecting a Simple Random Sample Using A Random Number Table

Sampling Frame For Population With 850 Items

Item Name	Item \#
Bev R.	001
Ulan X.	002
.	\cdot
.	\cdot
.	\cdot
Joann P.	.
Paul F.	849
	850

Portion Of A Random Number Table 492808892435779002838116307275 111000234012860746979664489439 098932399720048494208887208401

The First 5 Items in a simple random sample

Item \# 492

Item \# 808
Item \# 892 -- does not exist so ignore Item \# 435
Item \# 779
Item \# 002

Probability Sample:
 Systematic Sample

- Decide on sample size: n
- Divide frame of N individuals into groups of k individuals: $k=N / n$
- Randomly select one individual from the $1^{\text {st }}$ group
- Select every $\mathrm{k}^{\text {th }}$ individual thereafter

$$
\begin{aligned}
& N=40 \\
& n=4 \\
& k=10
\end{aligned}
$$

Probability Sample: Stratified Sample

- Divide population into two or more subgroups (called strata) according to some common characteristic.
- A simple random sample is selected from each subgroup, with sample sizes proportional to strata sizes.
- Samples from subgroups are combined into one.
- This is a common technique when sampling population of voters, stratifying across racial or socio-economic lines.

Probability Sample Cluster Sample

DCOVA

- Population is divided into several "clusters," each representative of the population.
- A simple random sample of clusters is selected.
- All items in the selected clusters can be used, or items can be chosen from a cluster using another probability sampling technique.
- A common application of cluster sampling involves election exit polls, where certain election districts are selected and sampled.
Population
divided into
16 clusters.

Probability Sample: Comparing Sampling Methods

- Simple random sample and Systematic sample:
- Simple to use.
- May not be a good representation of the population's underlying characteristics.
- Stratified sample:
- Ensures representation of individuals across the entire population.
- Cluster sample:
- More cost effective.
- Less efficient (need larger sample to acquire the same level of precision).

Types of Survey Errors

- Coverage error or selection bias:
- Exists if some groups are excluded from the frame and have no chance of being selected.
- Nonresponse error or bias:
- People who do not respond may be different from those who do respond.
- Sampling error:
- Variation from sample to sample will always exist.
- Measurement error:
- Due to weaknesses in question design and / or respondent error.

Types of Survey Errors (continued) DCOVA

- Coverage error
- Nonresponse error
- Sampling error

Excluded from frame

Follow up on nonresponses

Random differences from sample to sample

- Measurement error

Chapter Summary

In this chapter we have discussed:

- Understanding issues that arise when defining variables.
- How to define variables.
- Understanding the different measurement scales.
- How to collect data.
- Identifying different ways to collect a sample.
- Understanding the types of survey errors.

Chapter 2

Business Statistics
 A First Course

Organizing and Visualizing Variables

Objectives

In this chapter you learn:

- How to organize and visualize categorical variables.
- How to organize and visualize numerical variables.
- How to visualizing Two Numerical Variables.

Organizing Data Creates Both Tabular And Visual Summaries
 DCOVA

- Summaries both guide further exploration and sometimes facilitate decision making.
- Visual summaries enable rapid review of larger amounts of data \& show possible significant patterns.
- Often, the Organize and Visualize step in DCOVA occur concurrently.

Categorical Data Are Organized By Utilizing Tables
 DCOVA

Organizing Categorical Data: Summary Table

- A summary table tallies the frequencies or percentages of items in a set of categories so that you can see differences between categories.

Devices Millennials Use to Watch Movies or Television Shows

Devices Used To Watch Movies or TV Shows	Percent
Television Set	49%
Tablet	9%
Smartphone	10%
Laptop / Desktop	32%

Source: Data extracted and adapted from A. Sharma, "Big Media Needs to Embrace Digital Shift Not Fight It," Wall Street Journal, June 22, 2016, p. 1-2.

A Contingency Table Helps Organize Two or More Categorical Variables

DCOVA

- Used to study patterns that may exist between the responses of two or more categorical variables.
- Cross tabulates or tallies jointly the responses of the categorical variables.
- For two variables the tallies for one variable are located in the rows and the tallies for the second variable are located in the columns.

Contingency Table - Example

 DCOVA- A random sample of 400 invoices is drawn.
- Each invoice is categorized as a small, medium, or large amount.
- Each invoice is also examined to identify if there are any errors.
- This data are then organized in the contingency table to the right.

Contingency Table Based On Percentage Of Overall Total

DCOVA

	No Errors	Errors	Total		50\% =	70 /	
Small	170	20	190	\rightarrow	. 0 \% =	00 /	
Amount					25\% =	65 / 4	
Medium	100	40	140				
Amount					No		Total
Large Amount	65	5	70		Errors	Errors	
				Small	42.50\%	5.00\%	47.50\%
Total	335	65	400	Amount			
				Medium Amoun	25.00\%	10.00\%	35.00\%
83.75% of sampled invoices have no errors and 47.50% of sampled invoices are for small amounts.				Large Amount	16.25\%	1.25\%	17.50\%
				Total	83.75\%	16.25\%	100.0\%

Contingency Table Based On Percentage of Row Totals

DCOVA

	No Errors	Errors	Total	8	47\%	70 /	
Small	170	20	190	\rightarrow	43\% =	100 /	
Amount					6\%	65 / 70	
Medium	100	40	140				
Amount					No		Total
Large Amount	65	5	70		Errors	Errors	
				Small	89.47\%	10.53\%	100.0\%
Total	335	65	400	Medium Amount			
					71.43\%	28.57\%	100.0\%
Medium invoices have a larger chance (28.57\%) of having errors than small (10.53\%) or large (7.14\%) invoices.				Large Amount	92.86\%	7.14\%	100.0\%
				Total	83.75\%	16.25\%	100.0\%

Contingency Table Based On Percentage Of Column Totals

	No Errors	Errors	Total	$50.75 \%=170 / 335$			
Small Amount	170	20	190	$\rightarrow 30$	$77 \%=$	$20 / 65$	
Medium	100	40	140				
Amount					No		Total
Large Amount	65	5	70		Errors	Errors	
				Small	50.75\%	30.77\%	47.50\%
Total	335	65	400	Amount			
				Medium Amount	29.85\%	61.54\%	35.00\%
There is a 61.54% chance that invoices with errors are of medium size.				Large Amount	19.40\%	7.69\%	17.50\%
				Total	100.0\%	100.0\%	100.0\%

Tables Used For Organizing Numerical Data

DCOVA

Organizing Numerical Data: Ordered Array

DCOVA

- An ordered array is a sequence of data, in rank order, from the smallest value to the largest value.
- Shows range (minimum value to maximum value).
- May help identify outliers (unusual observations).

Age of Surveyed College Students	Day Students						
	16	17	17	18	18	18	
	19	19	20	20	21	22	
	22	25	27	32	38	42	
	Night Students						
	18	18	19	19	20	21	
	23	28	32	33	41	45	

Organizing Numerical Data: Frequency Distribution

- The frequency distribution is a summary table in which the data are arranged into numerically ordered classes.
- You must give attention to selecting the appropriate number of class groupings for the table, determining a suitable width of a class grouping, and establishing the boundaries of each class grouping to avoid overlapping.
- The number of classes depends on the number of values in the data. With a larger number of values, typically there are more classes. In general, a frequency distribution should have at least 5 but no more than 15 classes.
- To determine the width of a class interval, you divide the range (Highest value-Lowest value) of the data by the number of class groupings desired.

Organizing Numerical Data:
 Frequency Distribution Example DCOVA

Example: A manufacturer of insulation randomly selects 20 winter days and records the daily high temperature in degrees Fahrenheit.
$24,35,17,21,24,37,26,46,58,30,32,13,12,38,41,43,44,27,53,27$

Organizing Numerical Data: Frequency Distribution Example

- Sort raw data in ascending order:
12, 13, 17, 21, 24, 24, 26, 27, 27, 30, 32, 35, 37, 38, 41, 43, 44, 46, 53, 58.
- Find range: 58-12 = 46 .
- Select number of classes: 5 (usually between 5 and 15).
- Compute class interval (width): 10 (46/5 then round up).
- Determine class boundaries (limits):
- Class 1: 10 but less than 20.
. Class 2: 20 but less than 30.
- Class 3: 30 but less than 40.
. Class 4: 40 but less than 50.
. Class 5: 50 but less than 60.
- Compute class midpoints: 15, 25, 35, 45, 55.
- Count observations \& assign to classes.

Organizing Numerical Data: Frequency Distribution Example

DCOVA
Data in ordered array:
$12,13,17,21,24,24,26,27,27,30,32,35,37,38,41,43,44,46,53,58$

Class	Midpoints	Frequency
$\mathbf{1 0}$ but less than 20	15	3
20 but less than 30	25	6
30 but less than 40	35	5
40 but less than 50	45	4
50 but less than 60	55	2
Total		20

Organizing Numerical Data: Relative \& Percent Frequency Distribution Example

 DCOVA| Class | Frequency | Relative
 Frequency | Percentage |
| :---: | :---: | :---: | :---: |
| $\mathbf{1 0}$ but less than $\mathbf{2 0}$ | $\mathbf{3}$ | $\mathbf{. 1 5}$ | $\mathbf{1 5 \%}$ |
| $\mathbf{2 0}$ but less than $\mathbf{3 0}$ | $\mathbf{6}$ | $\mathbf{. 3 0}$ | $\mathbf{3 0 \%}$ |
| $\mathbf{3 0}$ but less than $\mathbf{4 0}$ | $\mathbf{5}$ | $\mathbf{. 2 5}$ | $\mathbf{2 5 \%}$ |
| $\mathbf{4 0}$ but less than $\mathbf{5 0}$ | $\mathbf{4}$ | $\mathbf{. 2 0}$ | $\mathbf{2 0 \%}$ |
| $\mathbf{5 0}$ but less than $\mathbf{6 0}$ | $\mathbf{2}$ | $\mathbf{. 1 0}$ | $\mathbf{1 0 \%}$ |
| Total | $\mathbf{2 0}$ | $\mathbf{1 . 0 0}$ | $\mathbf{1 0 0 \%}$ |

Relative Frequency = Frequency / Total,

Organizing Numerical Data: Cumulative Frequency Distribution Example

DCOVA

Class	Frequency	Percentage	Cumulative Frequency	Cumulative Percentage
10 but less than 20	3	15%	3	15%
20 but less than 30	6	30%	9	45%
30 but less than 40	5	25%	14	70%
40 but less than 50	4	20%	18	90%
50 but less than 60	2	10%	20	100%
Total	20	100%	20	100%

Cumulative Percentage = Cumulative Frequency / Total * 100 e.g. $45 \%=100 * 9 / 20$

Why Use a Frequency Distribution?

- It condenses the raw data into a more useful form.
- It allows for a quick visual interpretation of the data.
- It enables the determination of the major characteristics of the data set including where the data are concentrated/ clustered.

Frequency Distributions: Some Tips

DCOVA

- Different class boundaries may provide different pictures for the same data (especially for smaller data sets).
- Shifts in data concentration may show up when different class boundaries are chosen.
- As the size of the data set increases, the impact of alterations in the selection of class boundaries is greatly reduced.
- When comparing two or more groups with different sample sizes, you must use either a relative frequency or a percentage distribution.

Visualizing Categorical Data Through Graphical Displays

Visualizing Categorical Data: The Bar Chart

DCOVA

- The bar chart visualizes a categorical variable as a series of bars. The length of each bar represents either the frequency or percentage of values for each category. Each bar is separated by a space called a gap.

Devices Used to Watch	Percent
Television Set	49%
Tablet	9%
Smartphone	10%
Laptop / Desktop	32%

Percentage of the Time Millennials Watch Movies or Television Shows on Various Devices

Visualizing Categorical Data: The Pie Chart

DCOVA

- The pie chart is a circle broken up into slices that represent categories. The size of each slice of the pie varies according to the percentage in each category.

Devices Used to Watch	Percent
Television Set	49%
Tablet	9%
Smartphone	10%
Laptop / Desktop	32%

Percentage of the Time Millennials Watch Movies or Television Shows on Various Devices

Visualizing Categorical Data: The Doughnut Chart

- The doughnut chart is the outer part of a circle broken up into pieces that represent categories. The size of each piece of the doughnut varies according to the percentage in each category.

Devices Used to Watch	Percent
Television Set	49%
Tablet	9%
Smartphone	10%
Laptop / Desktop	32%

Visualizing Categorical Data: The Pareto Chart

DCOVA

- Used to portray categorical data (nominal scale).
- A vertical bar chart, where categories are shown in descending order of frequency.
- A cumulative polygon is shown in the same graph.
- Used to separate the "vital few" from the "trivial many."

Visualizing Categorical Data: The Pareto Chart (con't)

Ordered Summary Table For Causes Of Incomplete ATM Transactions

Cumulative

Cause

Warped card jammed
Card unreadable
ATM malfunctions
ATM out of cash
Invalid amount requested
Wrong keystroke
Lack of funds in account Total

Frequency Percent
365 50.41\%
234 32.32\%
32 4.42\%
28 3.87\%
23
23
19
724
3.18\%
3.18\% 2.62\% 100.00\%

Percent
50.41\%
82.73\%
87.15\%
91.02\%
94.20\%
97.38\%
100.00\%

[^0]
Visualizing Categorical Data: The Pareto Chart (con't)

DCOVA
Pareto Chart of Incomplete ATM Transactions

Visualizing Categorical Data: Side By Side Bar Charts

- The side by side bar chart represents the data from a contingency table.

Invoices with errors are much more likely to be of medium size (61.5% vs 30.8% \& 7.7%).

Visualizing Categorical Data: Doughnut Charts
 DCOVA

- A Doughnut Chart can be used to represent the data from a contingency table.

	No Errors	Errors	Total
Small Amount	50.75%	30.77%	47.50%
Medium Amount	29.85%	61.54%	35.00%
Large Amount	19.40%	7.69%	17.50%
Total	100.0%	100.0%	100.0%

Invoices with errors are much more likely to be of medium size (61.5% vs 30.8% \& 7.7%).

Visualizing Numerical Data By Using Graphical Displays

DCOVA

Numerical Data

Stem-and-Leaf Display

DCOVA

- A simple way to see how the data are distributed and where concentrations of data exist.

METHOD: Separate the sorted data series into leading digits (the stems) and the trailing digits (the leaves).

Organizing Numerical Data: Stem and Leaf Display

DCOVA

- A stem-and-leaf display organizes data into groups (called stems) so that the values within each group (the leaves) branch out to the right on each row.

Age of Surveyed	Day Students					
College Students	16	17	17	18	18	18
	19	19	20	20	21	22
	22	25	27	32	38	42
	Night Students					
	18	18	19	19	20	21
	23	28	32	33	41	45

Day Students

Stem	Leaf
1	67788899
2	0012257
3	28
4	2

Night Students

Stem	Leaf
1	8899
2	0138
3	23
4	15

Visualizing Numerical Data: The Histogram

DCOVA

- A vertical bar chart of the data in a frequency distribution is called a histogram.
- In a histogram there are no gaps between adjacent bars.
- The class boundaries (or class midpoints) are shown on the horizontal axis.
- The vertical axis is either frequency, relative frequency, or percentage.
- The height of the bars represent the frequency, relative frequency, or percentage.

Visualizing Numerical Data: The Histogram

DCOVA

Class	Frequency	Relative Frequency	Percentage
$\mathbf{1 0}$ but less than 20	3	.15	15
20 but less than 30	6	.30	30
30 but less than 40	5	.25	25
40 but less than 50	4	.20	20
50 but less than 60	2	.10	10
Total	20	1.00	100

(In a percentage histogram the vertical axis would be defined to show the percentage of observations per class).

Visualizing Numerical Data: The Percentage Polygon

- A percentage polygon is formed by having the midpoint of each class represent the data in that class and then connecting the sequence of midpoints at their respective class percentages.
- The cumulative percentage polygon, or ogive, displays the variable of interest along the X axis, and the cumulative percentages along the Y axis.
- Useful when there are two or more groups to compare.

Visualizing Numerical Data: The Frequency Polygon

Useful When Comparing Two or More Groups

Visualizing Numerical Data: The Percentage Polygon

DCOVA
Percentage Polygons for Three-Year Return Percentage for the Growth and Value Funds

Visualizing Numerical Data:

 The Cumulative Percentage Polygon (Ogive)
Useful When Comparing Two or More Groups

Visualizing Numerical Data: The Cumulative Percentage Polygon (Ogive)

 DCOVACumulative Percentage Polygons for the
Three-Year Return Percentages for the Growth and Value Funds

Visualizing Two Numerical Variables By Using Graphical Displays

Visualizing Two Numerical Variables: The Scatter Plot

- Scatter plots are used for numerical data consisting of paired observations taken from two numerical variables.
- One variable's values are displayed on the horizontal or X axis and the other variable's values are displayed on the vertical or Y axis.
- Scatter plots are used to examine possible relationships between two numerical variables.

Scatter Plot Example

DCOVA

Volume per day	Cost per day
23	125
26	140
29	146
33	160
38	167
42	170
50	188
55	195
60	200

Cost per Day vs. Production Volume

Visualizing Two Numerical Variables: The Time Series Plot

- A Time-Series Plot is used to study patterns in the values of a numeric variable over time.
- The Time-Series Plot:
- Numeric variable's values are on the vertical axis and the time period is on the horizontal axis.

Time Series Plot Example

Year	Number of Franchises
2009	43
2010	54
2011	60
2012	73
2013	82
2014	95
2015	107
2016	99
2017	95

Number of Franchises

Chapter Summary

In this chapter we covered:

- Organizing and visualizing categorical variables.
- Organizing and visualizing numerical variables.
- How to visualizing Two Numerical Variables.

Chapter 3

Business Statistics A First Course

Numerical Descriptive Measures

Objectives

In this chapter, you learn to:

- Describe the properties of central tendency, variation, and shape in numerical variables.
- Construct and interpret a boxplot.
- Compute descriptive summary measures for a population.
- Calculate the covariance and the coefficient of correlation.

Summary Definitions

- The central tendency is the extent to which the values of a numerical variable group around a typical or central value.
- The variation is the amount of dispersion or scattering away from a central value that the values of a numerical variable show.
- The shape is the pattern of the distribution of values from the lowest value to the highest value.

Measures of Central Tendency:

The Mean

- The arithmetic mean (often just called the "mean") is the most common measure of central tendency.
- For a sample of size n :

Measures of Central Tendency: The Mean (con't)

- The most common measure of central tendency.
- Mean = sum of values divided by the number of values.
- Affected by extreme values (outliers).

$$
\frac{11+12+13+14+15}{5}=\frac{65}{5}=13
$$

$$
\frac{11+12+13+14+20}{5}=\frac{70}{5}=14
$$

Measures of Central Tendency: The Median

- In an ordered array, the median is the "middle" number (50\% above, 50\% below).

- Less sensitive than the mean to extreme values.

Measures of Central Tendency: Locating the Median

- The location of the median when the values are in numerical order (smallest to largest):

Median position $=\frac{n+1}{2}$ position in the ordered data

- If the number of values is odd, the median is the middle number.
- If the number of values is even, the median is the average of the two middle numbers.

Note that $\frac{\mathrm{n}+1}{2}$ is not the value of the median, only the position of the median in the ranked data.

Measures of Central Tendency: The Mode

- Value that occurs most often.

DCOVA

- Not affected by extreme values.
- Used for either numerical or categorical data.
- There may be no mode.
- There may be several modes.

No Mode

Measures of Central Tendency: Review Example

House Prices:
\$2,000,000
\$ 500,000
\$ 300,000
\$ 100,000
\$ 100,000
Sum \$ 3,000,000

- Mean: (\$3,000,000/5)
$=\$ 600,000$
- Median: middle value of ranked data

$$
=\$ 300,000
$$

- Mode: most frequent value
$=\$ 100,000$

Measures of Central Tendency: Which Measure to Choose?

DCOVA

- The mean is generally used, unless extreme values (outliers) exist.
- The median is often used, since the median is not sensitive to extreme values. For example, median home prices may be reported for a region; it is less sensitive to outliers.
- In many situations it makes sense to report both the mean and the median.

Measures of Central Tendency: Summary

DCOVA

Measures of Variation

- Measures of variation give information on the spread or variability or dispersion of the data values.

Measures of Variation:

The Range

- Simplest measure of variation.
- Difference between the largest and the smallest values:

$$
\text { Range }=X_{\text {largest }}-X_{\text {smallest }}
$$

Example:

Range =13-1 = 12

Measures of Variation: Why The Range Can Be Misleading

DCOVA

- Does not account for how the data are distributed.

- Sensitive to outliers

$$
\begin{gathered}
\mathbf{1}, 1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,5 \\
\text { Range }=\mathbf{5 - 1 = 4}
\end{gathered}
$$

$$
\begin{gathered}
\mathbf{1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 3 , 3 , 3 , 4 , \mathbf { 1 2 0 }} \\
\text { Range }=\mathbf{1 2 0}-\mathbf{1}=\mathbf{1 1 9}
\end{gathered}
$$

Measures of Variation: The Sample Variance

- Average (approximately) of squared deviations of values from the mean.
- Sample variance:

Where $\quad \bar{X}=$ arithmetic mean
$\mathrm{n}=$ sample size
$X_{i}=i t h^{\text {th }}$ value of the variable X

Measures of Variation:

The Sample Standard Deviation
DCOVA

- Most commonly used measure of variation.
- Shows variation about the mean.
- Is the square root of the variance.
- Has the same units as the original data.
- Sample standard deviation:

Measures of Variation:

The Sample Standard Deviation

DCOVA

Steps for Computing Standard Deviation:

1. Compute the difference between each value and the mean.
2. Square each difference.
3. Add the squared differences.
4. Divide this total by $n-1$ to get the sample variance.
5. Take the square root of the sample variance to get the sample standard deviation.

Measures of Variation:
Sample Standard Deviation Calculation Example

DCOVA

Sample Data $\left(\mathrm{X}_{\mathrm{i}}\right): \begin{array}{llllllll}10 & 12 & 14 & 15 & 17 & 18 & 18 & 24\end{array}$

$$
\begin{aligned}
& \mathrm{n}=8 \quad \text { Mean }=\bar{X}=16 \\
& S=\sqrt{\frac{(10-\bar{X})^{2}+(12-\bar{X})^{2}+(14-\bar{X})^{2}+\cdots+(24-\bar{X})^{2}}{n-1}} \\
&=\sqrt{\frac{(10-16)^{2}+(12-16)^{2}+(14-16)^{2}+\cdots+(24-16)^{2}}{8-1}}
\end{aligned}
$$

$$
=\sqrt{\frac{130}{7}}=4.3095 \Longrightarrow \begin{aligned}
& \text { A measure of the "average" } \\
& \text { scatter around the mean. }
\end{aligned}
$$

Measures of Variation: Comparing Standard Deviations

 DCOVA

Measures of Variation: Comparing Standard Deviations

Measures of Variation: Summary Characteristics

DCOVA

- The more the data are spread out, the greater the range, variance, and standard deviation.
- The more the data are concentrated, the smaller the range, variance, and standard deviation.
- If the values are all the same (no variation), all these measures will be zero.
- None of these measures are ever negative.

Measures of Variation:
 The Coefficient of Variation

DCOVA

- Measures relative variation.
- Always in percentage (\%).
- Shows variation relative to mean.
- Can be used to compare the variability of two or more sets of data measured in different units.

Measures of Variation: Comparing Coefficients of Variation

- Stock A:
- Mean price last year $=\$ 50$.
- Standard deviation = \$5.

$$
\mathrm{CV}_{\mathrm{A}}=\left(\frac{\mathrm{S}}{\bar{X}}\right) \cdot 100 \%=\frac{\$ 5}{\$ 50} \cdot 100 \%=10 \%
$$

- Stock B:
- Mean price last year = \$100.
- Standard deviation = \$5.

$$
C V_{B}=\left(\frac{S}{\bar{X}}\right) \cdot 100 \%=\frac{\$ 5}{\$ 100} \cdot 100 \%=5 \%
$$

Measures of Variation:
 Comparing Coefficients of Variation (con't)

- Stock A:
- Mean price last year = \$50.
- Standard deviation = \$5.

$$
\mathrm{CV}_{\mathrm{A}}=\left(\frac{\mathrm{S}}{\bar{X}}\right) \cdot 100 \%=\frac{\$ 5}{\$ 50} \cdot 100 \%=10 \%
$$

- Stock C:
- Mean price last year = \$8.
- Standard deviation = \$2.

$$
\mathrm{CV}_{\mathrm{C}}=\left(\frac{\mathrm{S}}{\overline{\mathrm{X}}}\right) \cdot 100 \%=\frac{\$ 2}{\$ 8} \cdot 100 \%=25 \%
$$

Stock C has a much smaller standard deviation but a much higher coefficient of variation

Locating Extreme Outliers: Z-Score

DCOVA

- To compute the Z-score of a data value, subtract the mean and divide by the standard deviation.
- The Z-score is the number of standard deviations a data value is from the mean.
- A data value is considered an extreme outlier if its Zscore is less than -3.0 or greater than +3.0 .
- The larger the absolute value of the Z-score, the farther the data value is from the mean.

Locating Extreme Outliers: Z-Score

DCOVA

$$
Z=\frac{X-\bar{X}}{S}
$$

where X represents the data value
$\overline{\mathrm{X}}$ is the sample mean
S is the sample standard deviation

Locating Extreme Outliers: Z-Score

- Suppose the mean math SAT score is 490 , with a standard deviation of 100 .
- Compute the Z-score for a test score of 620.

$$
Z=\frac{X-\bar{X}}{S}=\frac{620-490}{100}=\frac{130}{100}=1.3
$$

A score of 620 is 1.3 standard deviations above the mean and would not be considered an outlier.

Shape of a Distribution

DCOVA

- Describes how data are distributed.
- Two useful shape related statistics are:
- Skewness:
- Measures the extent to which data values are not symmetrical.
- Kurtosis:
- Kurtosis measures the peakedness of the curve of the distribution-that is, how sharply the curve rises approaching the center of the distribution.

Shape of a Distribution (Skewness)

DCOVA

- Measures the extent to which data is not symmetrical.

Left-Skewed
 Statistic

Symmetric

Mean = Median

Right-Skewed
Median < Mean

Shape of a Distribution -- Kurtosis measures how sharply the curve rises approaching the center of the distribution

DCOVA

Exploring Numerical Data Using Quartiles

- Can visualize the distribution of the values for a numerical variable by computing:
- The quartiles.
- The five-number summary.
- Constructing a boxplot.

Quartile Measures

Quartit

- Quartiles split the ranked data into 4 segments with an equal number of values per segment.

- The first quartile, Q_{1}, is the value for which 25% of the values are smaller and 75% are larger.
- Q_{2} is the same as the median (50% of the values are smaller and 50% are larger).
- Only 25% of the values are greater than the third quartile.

Quartile Measures: Locating Quartiles

DCOVA
Find a quartile by determining the value in the appropriate position in the ranked data, where:

First quartile position: $\quad \mathbf{Q}_{1}=(\mathrm{n}+1) / 4$ ranked value.
Second quartile position: $\mathbf{Q}_{2}=(\mathrm{n}+1) / 2$ ranked value.
Third quartile position: $\quad Q_{3}=3(n+1) / 4$ ranked value.
where n is the number of observed values.

Quartile Measures: Calculation Rules

DCOVA

- When calculating the ranked position use the following rules:
- If the result is a whole number then it is the ranked position to use.
- If the result is a fractional half (e.g. 2.5, 7.5, 8.5, etc.) then average the two corresponding data values.
- If the result is not a whole number or a fractional half then round the result to the nearest integer to find the ranked position.

Quartile Measures Calculating The Quartiles: Example DCOVA

Sample Data in Ordered Array: $\begin{array}{lllllllll}11 & 12 & 13 & 16 & 16 & 17 & 18 & 21 & 22\end{array}$

$$
(\mathrm{n}=9)
$$

Q_{1} is in the $(9+1) / 4=2.5$ position of the ranked data,

$$
\text { so } \quad Q_{1}=(12+13) / 2=12.5 \text {. }
$$

Q_{2} is in the $(9+1) / 2=5^{\text {th }}$ position of the ranked data,

$$
\text { so } Q_{2}=\text { median }=16
$$

Q_{3} is in the $3(9+1) / 4=7.5$ position of the ranked data,

$$
\text { so } \quad Q_{3}=(18+21) / 2=19.5 \text {. }
$$

Q_{1} and Q_{3} are measures of non-central location.
$Q_{2}=$ median, is a measure of central tendency.

Quartile Measures: The Interquartile Range (IQR)

DCOVA

- The IQR is $Q_{3}-Q_{1}$ and measures the spread in the middle 50% of the data.
- The IQR is also called the midspread because it covers the middle 50% of the data.
- The IQR is a measure of variability that is not influenced by outliers or extreme values.
- Measures like Q_{1}, Q_{3}, and IQR that are not influenced by outliers are called resistant measures.

Calculating The Interquartile Range

DCOVA

Example:

The Five Number Summary

DCOVA

The five numbers that help describe the center, spread and shape of data are:

- X ${ }_{\text {smallest. }}$
- First Quartile $\left(\mathrm{Q}_{1}\right)$.
- Median $\left(\mathrm{Q}_{2}\right)$.
- Third Quartile $\left(\mathrm{Q}_{3}\right)$.
- X largest.

Five Number Summary and The Boxplot

DCOVA

- The Boxplot: A Graphical display of the data based on the five-number summary:

$$
\begin{array}{|lllllll|}
\hline X_{\text {smallest }} & -- & Q_{1} & -- & \text { Median } & -- & Q_{3} \\
\hline
\end{array}
$$

Example:

	25% of data	25% 25% of data 25% of data of data	
	$X_{\text {smallest }}$	$Q_{1} \quad$ Median $\quad Q_{3} \quad X_{\text {largest }}$	

Five Number Summary: Shape of Boxplots

DCOVA

- If data are symmetric around the median then the box and central line are centered between the endpoints.

- A Boxplot can be shown in either a vertical or horizontal orientation.

Numerical Descriptive Measures for a Population

- Descriptive statistics discussed previously described a sample, not the population.
- Summary measures describing a population, called parameters, are denoted with Greek letters.
- Important population parameters are the population mean, variance, and standard deviation.

Numerical Descriptive Measures for a Population: The mean μ

- The population mean is the sum of the values in the population divided by the population size, N .

Where
$\mu=$ population mean
$N=$ population size
$X_{i}=i^{\text {th }}$ value of the variable X

Numerical Descriptive Measures For A Population: The Variance σ^{2}

- Average of squared deviations of values from the mean.
- Population variance:

$$
\sigma^{2}=\frac{\sum_{i=1}^{N}\left(X_{i}-\mu\right)^{2}}{N}
$$

Where
$\mu=$ population mean
$\mathrm{N}=$ population size
$X_{i}=i^{\text {th }}$ value of the variable X

Numerical Descriptive Measures For A Population: The Standard Deviation σ

DCOVA

- Most commonly used measure of variation.
- Shows variation about the mean.
- Is the square root of the population variance.
- Has the same units as the original data.
- Population standard deviation:

Sample statistics versus population parameters

DCOVA

Measure	Population Parameter	Sample Statistic
Mean	μ	\bar{X}
Variance	σ^{2}	S^{2}
Standard Deviation	σ	S

The Empirical Rule

- The empirical rule approximates the variation of data in a symmetric mound-shaped distribution.
- Approximately 68% of the data in a symmetric mound shaped distribution is within 1 standard deviation of the mean or $\mu \pm 1 \sigma$.

The Empirical Rule

DCOVA

- Approximately 95% of the data in a symmetric moundshaped distribution lies within two standard deviations of the mean, or $\mu \pm 2 \sigma$.
- Approximately 99.7% of the data in a symmetric moundshaped distribution lies within three standard deviations of the mean, or $\mu \pm 3 \sigma$.

Using the Empirical Rule

DCOVA

- Suppose that the variable Math SAT scores is bellshaped with a mean of 500 and a standard deviation of 90 . Then:
- Approximately 68% of all test takers scored between 410 and 590, (500 ± 90).
- Approximately 95% of all test takers scored between 320 and 680, (500 ± 180).
- Approximately 99.7% of all test takers scored between 230 and 770, (500 ± 270).

We Discuss Two Measures Of The Relationship Between Two Numerical Variables

- Scatter plots allow you to visually examine the relationship between two numerical variables and now we will discuss two quantitative measures of such relationships.
- The Covariance.
- The Coefficient of Correlation.

The Covariance

DCOVA

- The covariance measures the strength of the linear relationship between two numerical variables (X \& Y).
- The sample covariance:

$$
\operatorname{cov}(X, Y)=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{n-1}
$$

- Only concerned with the strength of the relationship.
- No causal effect is implied.

Interpreting Covariance

DCOVA

- Covariance between two variables:
$\operatorname{cov}(X, Y)>0 \longrightarrow X$ and Y tend to move in the same direction.
$\operatorname{cov}(X, Y)<0 \rightarrow X$ and Y tend to move in opposite directions.
$\operatorname{cov}(X, Y)=0 \longrightarrow X$ and Y are independent.
- The covariance has a major flaw:
- It is not possible to determine the relative strength of the relationship from the size of the covariance.

Coefficient of Correlation

DCOVA

- Measures the relative strength of the linear relationship between two numerical variables.
- Sample coefficient of correlation:

$$
r=\frac{\operatorname{cov}(X, Y)}{S_{X} S_{Y}}
$$

Where,

$$
\operatorname{cov}(X, Y)=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{n-1}
$$

$$
S_{Y}=\sqrt{\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}{n-1}}
$$

Features of the Coefficient of Correlation

- The population coefficient of correlation is referred as ρ.
- The sample coefficient of correlation is referred to as r.
- Either ρ or r have the following features:
- Unit free.
- Range between -1 and 1 .
- The closer to -1 , the stronger the negative linear relationship.
- The closer to 1 , the stronger the positive linear relationship.
- The closer to 0 , the weaker the linear relationship.

Scatter Plots of Sample Data with Various Coefficients of Correlation

Chapter Summary

In this chapter we have discussed:

- Describing the properties of central tendency, variation, and shape in numerical variables.
- Constructing and interpreting a boxplot.
- Computing descriptive summary measures for a population.
- Calculating the covariance and the coefficient of correlation.

Chapter 4

Basic Probability

Objectives

The objectives for this chapter are:

- To understand basic probability concepts.
- To understand conditional probability.
- Use Bayes' theorem to revise probabilities.
- Apply counting rules.

The Sample Space Is The Collection Of All Possible Outcomes Of A Variable

e.g. All 6 faces of a die:

e.g. All 52 cards of a bridge deck

Each Possible Outcome Of A Variable Is An Event

- Simple event:
- An event described by a single characteristic.
- e.g., A day in January from all days in 2019.
- Joint event:
- An event described by two or more characteristics.
- e.g. A day in January that is also a Wednesday from all days in 2019.
- Complement of an event A (denoted A'):
- All events that are not part of event A.
- e.g., All days from 2019 that are not in January.

Basic Probability Concepts

- Probability - the numerical value representing the chance, likelihood, or possibility that a certain event will occur (always between 0 and 1).
- Impossible Event - an event that has no chance of occurring (probability $=0$).
- Certain Event - an event that is sure to occur (probability = 1).

Mutually Exclusive Events

- Mutually exclusive events:
- Events that cannot occur simultaneously.

Example: Randomly choosing a day from 2019

$$
A=\text { day in January; } B=\text { day in February }
$$

- Events A and B are mutually exclusive.

Collectively Exhaustive Events

- Collectively exhaustive events:
- One of the events must occur.
- The set of events covers the entire sample space.

Example: Randomly choose a day from 2019.

$$
\begin{aligned}
& \text { A = Weekday; B = Weekend; } \\
& C=\text { January } ; D=\text { Spring; }
\end{aligned}
$$

- Events A, B, C and D are collectively exhaustive (but not mutually exclusive - a weekday can be in January or in Spring).
- Events A and B are collectively exhaustive and also mutually exclusive.

Three Approaches To Assessing Probability Of An Event

1. a priori -- based on prior knowledge of the process

Assuming all outcomes are equally likely	2. empirical probability -- based on observed data
	probability of occurrence $=\frac{\text { number of ways in which the event occurs }}{\text { total number of possible outcomes }}$
3. subjective probability	

based on a combination of an individual's past experience, personal opinion, and analysis of a particular situation.

Example of a priori probability

When randomly selecting a day from the year 2019 what is the probability the day is in January?

Probability of Day In January $=\frac{X}{T}=\frac{\text { number of days in January }}{\text { total number of days in } 2019}$

$$
\frac{X}{T}=\frac{31 \text { days in January }}{365 \text { days in } 2018}=\frac{31}{365}
$$

Example of empirical probability

Find the probability of selecting a male taking statistics from the population described in the following table:

	Taking Stats	Not Taking Stats	Total
Male	84	145	229
Female	76	134	210
Total	160	279	439

Probability of male taking stats $=\frac{\text { number of males taking stats }}{\text { total number of people }}=\frac{84}{439}=0.191$

Subjective Probability Differs From Person To Person

- What is the probability a new ad campaign is successful?
- A media development team assigns a 60% probability of success to its new ad campaign.
- The chief media officer of the company is less optimistic and assigns a 40% of success to the same campaign.
- The assignment of a subjective probability is based on a person's experiences, opinions, and analysis of a particular situation.
- Subjective probability is useful in situations when an empirical or a priori probability cannot be computed.

Summarizing Sample Spaces

Contingency Table -- M\&R Survey Results.

	Actually Purchased TV		
Planned To Purchase TV	Yes	No	Total
Yes	200	50	250
No	100	650	750
Total	300	700	1,000
			Total Number
		Of Sample	
			Space Outcomes.

Summarizing Sample Spaces Venn Diagram -- M\&R Survey Results.

> A $=$ Planned to Purchase
> $\mathrm{A}^{\prime}=$ Did not Plan To Purchase
> $\mathrm{B}=$ Actually Purchased
> $\mathrm{B}^{\prime}=$ Did not Purchase

Simple Probability: Definition \& Computing

- Simple Probability refers to the probability of a simple event.
- $P($ Planned to purchase)
- P(Actually purchased)

$$
P(A)=\frac{\text { number of outcomes satisfying } A}{\text { total number of outcomes }}
$$

$$
P(\text { Purchase })=250 / 1000
$$

Joint Probability: Definition \& Computing

- Joint Probability refers to the probability of an occurrence of two or more events (joint event).
- ex. P(Plan to Purchase and Purchase).
- ex. P(No Plan and Purchase).

$$
P(A \text { and } B)=\frac{\text { number of outcomes satisfying } A \text { and } B}{\text { total number of outcomes }}
$$

Computing A Marginal Probability Via Joint Probabilities

- Computing a marginal (or simple) probability:
$P(A)=P\left(A\right.$ and $\left.B_{1}\right)+P\left(A\right.$ and $\left.B_{2}\right)+\cdots+P\left(A\right.$ and $\left.B_{k}\right)$
- Where $B_{1}, B_{2}, \ldots, B_{k}$ are k mutually exclusive and collectively exhaustive events.
$P($ Planned $)=P($ Yes and Yes $)+P($ Yes and No $)=$ $200 / 1000+50 / 1000=250 / 1000$

Marginal \& Joint Probabilities In A Contingency Table

Event	Event		
	B_{1}	B_{2}	Total
	$P\left(A_{1}\right.$ and $\left.B_{1}\right)$	$P\left(A_{1}\right.$ and $\left.B_{2}\right)$	$P\left(A_{1}\right)$
A_{2}	$P\left(A_{2}\right.$ and $\left.B_{1}\right)$	$P\left(A_{2}\right.$ and $\left.B_{2}\right)$	$P\left(A_{2}\right)$
Total	$P\left(B_{1}\right)$	$P\left(B_{2}\right)$	1

Joint Probabilities

Marginal (Simple) Probabilities

Probability Summary So Far

- Probability is the numerical measure of the likelihood that an event will occur.
- The probability of any event must be between 0 and 1 , inclusively.

$$
0 \leq \mathrm{P}(\mathrm{~A}) \leq 1 \quad \text { For any event } \mathrm{A}
$$

- The sum of the probabilities of all mutually exclusive and collectively exhaustive events is 1 .

$$
P(A)+P(B)+P(C)=1
$$

If A, B, and C are mutually exclusive and collectively exhaustive

General Addition Rule

General Addition Rule:

$$
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
$$

If A and B are mutually exclusive, then
$P(A$ and $B)=0$, so the rule can be simplified:

$$
P(A \text { or } B)=P(A)+P(B)
$$

For mutually exclusive events A and B

General Addition Rule Example

$\mathbf{P}($ Planned or Purchased $)=$
P(Planned) + P(Purchased) - P(Planned and Purchased) = $250 / 1,000+300 / 1,000-200 / 1,000=350 / 1,000$

Computing Conditional Probabilities

- A conditional probability is the probability of one event, given that another event has occurred:

$$
P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}
$$

The conditional probability of A given that B has occurred.

The conditional probability of B given that A has occurred.

Where $P(A$ and $B)=$ joint probability of A and B
$P(A)=$ marginal or simple probability of A
$P(B)=$ marginal or simple probability of B

Conditional Probability Example

Since Planned is given we only need to consider the top row of the table.

Independent Events

- Two events are independent if and only if:

$$
P(A \mid B)=P(A)
$$

- Events A and B are independent when the probability of one event is not affected by the fact that the other event has occurred.

Are The Events Planned and Purchased Independent?

Does P(Purchased | Planned) = P(Purchased)?
$P($ Purchased | Planned $)=200 / 250=0.8$.
$P($ Purchased $)=700 / 1000=0.7$.
Since these two probabilities are not equal, these two events are dependent.

		Actually Purchased TV		
Planned To Purchase TV		Yes	No	Total
	Yes	200	50	250
	No	100	650	750
	Total	300	700	1,000

Multiplication Rules For Two Events

The General Multiplication Rule

$$
\mathbf{P}(\mathbf{A} \mid \mathbf{B})=\mathbf{P}(\mathbf{A} \text { and } \mathbf{B}) / \mathbf{P}(\mathbf{B})
$$

Solving for $P(A$ and $B)$

$\mathbf{P}(\mathbf{A}$ and $B)=\mathbf{P}(A \mid B) \mathbf{P}(B)$

Note: If A and B are independent, then $P(A \mid B)=P(A)$ and the multiplication rule simplifies to:

$$
P(A \text { and } B)=P(A) P(B)
$$

Marginal Probability Using The General Multiplication Rule

- Marginal probability for event A :
$P(A)=P\left(A \mid B_{1}\right) P\left(B_{1}\right)+P\left(A \mid B_{2}\right) P\left(B_{2}\right)+\cdots+P\left(A \mid B_{k}\right) P\left(B_{k}\right)$
- Where $B_{1}, B_{2}, \ldots, B_{k}$ are k mutually exclusive and collectively exhaustive events.
Let $\mathrm{A}=$ Planned, $\mathrm{B}_{1}=$ Purchase, $\& \mathrm{~B}_{2}=$ No Purchase
$P(A)=P\left(A \mid B_{1}\right) P\left(B_{1}\right)+P\left(A \mid B_{2}\right) P\left(B_{2}\right)=$
$(200 / 300)(300 / 1000)+(50 / 700)(700 / 1000)=0.25$

| | | Actually Purchased TV | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| | | Yes | No | Total |
| | Yes | 200 | 50 | 250 |
| | No | 100 | 650 | 750 |
| | Total | 300 | 700 | 1,000 |

Bayes' Theorem

- Bayes' Theorem is used to revise previously calculated probabilities based on new information.
- Developed by Thomas Bayes in the $18^{\text {th }}$ Century.
- It is an extension of conditional probability.

Bayes' Theorem

$$
\mathrm{P}\left(\mathrm{~B}_{\mathrm{i}} \mid \mathrm{A}\right)=\frac{\mathrm{P}\left(\mathrm{~A} \mid \mathrm{B}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{~B}_{\mathrm{i}}\right)}{\mathrm{P}\left(\mathrm{~A} \mid \mathrm{B}_{1}\right) \mathrm{P}\left(\mathrm{~B}_{1}\right)+\mathrm{P}\left(\mathrm{~A} \mid \mathrm{B}_{2}\right) \mathrm{P}\left(\mathrm{~B}_{2}\right)+\cdots+\mathrm{P}\left(\mathrm{~A} \mid \mathrm{B}_{\mathrm{k}}\right) \mathrm{P}\left(\mathrm{~B}_{\mathrm{k}}\right)}
$$

- where:
$B_{i}=i^{\text {th }}$ event of k mutually exclusive and collectively exhaustive events
$A=$ new event that might impact $P\left(B_{i}\right)$

Bayes' Theorem Example

- A drilling company has estimated a 40\% chance of striking oil for their new well.
- A detailed test has been scheduled for more information. Historically, 60\% of successful wells have had detailed tests, and 20% of unsuccessful wells have had detailed tests.
- Given that this well has been scheduled for a detailed test, what is the probability that the well will be successful?

Bayes' Theorem Example

- Let $S=$ successful well

$$
\mathrm{U}=\text { unsuccessful well }
$$

- $\mathrm{P}(\mathrm{S})=0.4, \mathrm{P}(\mathrm{U})=0.6 \quad$ (prior probabilities)
- Define the detailed test event as D
- Conditional probabilities:

$$
P(D \mid S)=0.6 \quad P(D \mid U)=0.2
$$

- Goal is to find $P(S \mid D)$

Bayes' Theorem Example

Apply Bayes' Theorem:

$$
\begin{aligned}
P(S \mid D) & =\frac{P(D \mid S) P(S)}{P(D \mid S) P(S)+P(D \mid U) P(U)} \\
& =\frac{(0.6)(0.4)}{(0.6)(0.4)+(0.2)(0.6)} \\
& =\frac{0.24}{0.24+0.12}=0.667
\end{aligned}
$$

So the revised probability of success, given that this well has been scheduled for a detailed test, is 0.667

Bayes' Theorem Example

- Given the detailed test, the revised probability of a successful well has risen to 0.667 from the original estimate of 0.4

Event	Prior Prob.	Conditional Prob.	Joint Prob.	Revised Prob.
S (successful)	0.4	0.6	$(0.4)(0.6)=0.24$	$0.24 / 0.36=0.667)$
U (unsuccessful)	0.6	0.2	$(0.6)(0.2)=0.12$	$0.12 / 0.36=0.333$
Sum $=\overline{0.36}$				

Counting Rules Are Often Useful In Computing Probabilities

- In many cases, there are a large number of possible outcomes.
- Counting rules can be used in these cases to help compute probabilities.

Counting Rules

- Rules for counting the number of possible outcomes
- Counting Rule 1:
- If any one of k different mutually exclusive and collectively exhaustive events can occur on each of n trials, the number of possible outcomes is equal to

k^{n}

- Example
- If you roll a fair die 3 times then there are $6^{3}=216$ possible outcomes

Counting Rules

- Counting Rule 2 :
- If there are k_{1} events on the first trial, k_{2} events on the second trial,.. and k_{n} events on the $n^{\text {th }}$ trial, the number of possible outcomes is

$$
\left(k_{1}\right)\left(k_{2}\right) \cdots\left(k_{n}\right)
$$

- Example:
- You want to go to a park, eat at a restaurant, and see a movie. There are 3 parks, 4 restaurants, and 6 movie choices. How many different possible combinations are there?
- Answer: (3)(4)(6) = 72 different possibilities

Counting Rules

- Counting Rule 3 :

- The number of ways that n items can be arranged in order is

$$
n!=(n)(n-1) \cdots(1)
$$

- Example:
- You have five books to put on a bookshelf. How many different ways can these books be placed on the shelf?
- Answer: 5 ! = (5)(4)(3)(2)(1) = 120 different possibilities.

Counting Rules

- Counting Rule 4:

- Permutations: The number of ways of arranging X objects selected from n objects in order is
- Example:

$$
{ }_{n} P_{x}=\frac{n!}{(n-X)!}
$$

- You have five books and are going to put three on a bookshelf. How many different ways can the books be ordered on the bookshelf?
- Answer: ${ }_{\mathrm{n}} \mathrm{P}_{\mathrm{x}}=\frac{\mathrm{n}!}{(\mathrm{n}-\mathrm{X})!}=\frac{5!}{(5-3)!}=\frac{120}{2}=60 \quad$ different possibilities.

Counting Rules

- Counting Rule 5:
- Combinations: The number of ways of selecting X objects from n objects, irrespective of order, is

$$
{ }_{n} C_{x}=\frac{n!}{X!(n-X)!}
$$

- Example:
- You have five books and are going to select three are to read. How many different combinations are there, ignoring the order in which they are selected?
- Answer: $\quad{ }_{n} C_{x}=\frac{n!}{X!(n-X)!}=\frac{5!}{3!(5-3)!}=\frac{120}{(6)(2)}=10 \quad$ different possibilities

Chapter Summary

In this chapter we covered:

- Using basic probability concepts.
- Using conditional probability.
- Using Bayes' theorem to revise probabilities.
- Using counting rules.

Chapter 5

Business Statistics
 A First Course

Discrete Probability Distributions

Objectives

In this chapter, you learn:

- The properties of a probability distribution.
- How to calculate the expected value and variance of a probability distribution.
- How to calculate probabilities from binomial and Poisson distributions.
- How to use the binomial and Poisson distributions to solve business problems.

Definitions

- Discrete variables produce outcomes that come from a counting process (e.g. number of classes you are taking).
- Continuous variables produce outcomes that come from a measurement (e.g. your annual salary, or your weight).

Types Of Variables

Discrete Variables

- Can only assume a countable number of values.

Examples:

- Roll a die twice

Let X be the number of times 4 occurs (then X could be 0,1 , or 2 times).

- Toss a coin 5 times.

Let X be the number of heads
(then $X=0,1,2,3,4$, or 5).

Probability Distribution For A Discrete Variable

- A probability distribution for a discrete variable is a mutually exclusive list of all possible numerical outcomes for that variable and a probability of occurrence associated with each outcome.

Interruptions Per Day In Computer Network	Probability
0	0.35
1	0.25
2	0.20
3	0.10
4	0.05
5	0.05

Probability Distributions Are Often Represented Graphically

Expected Value Of Discrete Variables, Measuring Center

- Expected Value (or mean) of a discrete variable (Weighted Average):

$$
\mu=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{N} x_{i} P\left(X=x_{i}\right)
$$

Interruptions Per Day In Computer Network $\left(\mathbf{x}_{\mathbf{i}}\right)$	Probability $\mathbf{P}\left(\mathbf{X}=\mathbf{x}_{\mathbf{i}}\right)$	$\mathbf{x}_{\mathbf{i}} \mathbf{P}\left(\mathbf{X}=\mathbf{x}_{\mathbf{i}}\right)$
0	0.35	$(0)(0.35)=0.00$
1	0.25	$(1)(0.25)=0.25$
2	0.20	$(2)(0.20)=0.40$
3	0.10	$(3)(0.10)=0.30$
4	0.05	$(4)(0.05)=0.20$
5	$\underline{0.05}$	$\underline{(5)(0.05)}=0.25$
	1.00	$\mu=E(X)=1.40$

Discrete Variables: Measuring Dispersion

- Variance of a discrete variable.

$$
\sigma^{2}=\sum_{\mathrm{i}=1}^{\mathrm{N}}\left[\mathrm{x}_{\mathrm{i}}-\mathrm{E}(\mathrm{X})\right]^{2} \mathrm{P}\left(\mathrm{X}=\mathrm{x}_{\mathrm{i}}\right)
$$

- Standard Deviation of a discrete variable.

$$
\sigma=\sqrt{\sigma^{2}}=\sqrt{\sum_{\mathrm{i}=1}^{\mathrm{N}}\left[\mathrm{x}_{\mathrm{i}}-\mathrm{E}(\mathrm{X})\right]^{2} \mathrm{P}\left(\mathrm{X}=\mathrm{x}_{\mathrm{i}}\right)}
$$

where:

$$
\begin{aligned}
& \mathrm{E}(\mathrm{X}) \quad=\text { Expected value of the discrete variable } \mathrm{X} \\
& \mathrm{x}_{\mathrm{i}}=\text { the } i^{\text {th }} \text { outcome of } \mathrm{X} \\
& \mathrm{P}\left(\mathrm{X}=\mathrm{x}_{\mathrm{i}}\right)=\text { Probability of the } \mathrm{ith}^{\text {th }} \text { occurrence of } X
\end{aligned}
$$

Discrete Variables: Measuring Dispersion

(continued)

$$
\sigma=\sqrt{\sum_{i=1}^{N}\left[x_{i}-E(X)\right]^{2} P\left(X=x_{i}\right)}
$$

| Interruptions Per
 Day In Computer
 Network $\left(\mathbf{x}_{\mathbf{i}}\right)$ | Probability
 $\mathbf{P}\left(\mathbf{X}=\mathbf{x}_{\mathbf{i}}\right)$ | $\left[\mathbf{x}_{\mathbf{i}}-\mathbf{E}(\mathbf{X})\right]^{\mathbf{2}}$ | $\left[\mathbf{x}_{\mathbf{i}}-\mathbf{E}(\mathbf{X})\right]^{\mathbf{2} P\left(\mathbf{X}=\mathbf{x}_{\mathbf{i}}\right)}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0.35 | $(0-1.4)^{2}=1.96$ | $(1.96)(0.35)=0.686$ |
| 1 | 0.25 | $(1-1.4)^{2}=0.16$ | $(0.16)(0.25)=0.040$ |
| 2 | 0.20 | $(2-1.4)^{2}=0.36$ | $(0.36)(0.20)=0.072$ |
| 3 | 0.10 | $(3-1.4)^{2}=2.56$ | $(2.56)(0.10)=0.256$ |
| 4 | 0.05 | $(4-1.4)^{2}=6.76$ | $(6.76)(0.05)=0.338$ |
| 5 | 0.05 | $(5-1.4)^{2}=12.96$ | $(12.96)(0.05)=0.648$ |
| | | | $\sigma^{2}=2.04, \sigma=1.4283$ |

Probability Distributions

Binomial Probability Distribution

- A fixed number of observations, n.
- e.g., 15 tosses of a coin; ten light bulbs taken from a warehouse.
- Each observation is classified into one of two mutually exclusive \& collectively exhaustive categories.
- e.g., head or tail in each toss of a coin; defective or not defective light bulb.
- The probability of being classified as the event of interest, π, is constant from observation to observation.
- Probability of getting a tail is the same each time we toss the coin.
- Since the two categories are mutually exclusive and collectively exhaustive, when the probability of the event of interest is π, the probability of the event of interest not occurring is $1-\pi$.
- The value of any observation is independent of the value of any other observation.

Possible Applications for the Binomial Distribution

- A manufacturing plant labels items as either defective or acceptable.
- A firm bidding for contracts will either get a contract or not.
- A marketing research firm receives survey responses of "yes I will buy" or "no I will not."
- New job applicants either accept the offer or reject it.

The Binomial Distribution Counting Techniques

- Suppose the event of interest is obtaining heads on the toss of a fair coin. You are to toss the coin three times. In how many ways can you get two heads?
- Possible ways: HHT, HTH, THH, so there are three ways you can getting two heads.
- This situation is fairly simple. We need to be able to count the number of ways for more complicated situations.

Counting Techniques Rule of Combinations

- The number of combinations of selecting x objects out of n objects is:

$$
{ }_{n} C_{x}=\frac{n!}{x!(n-x)!}
$$

where:

$$
\begin{aligned}
& n!=(n)(n-1)(n-2) \cdots(2)(1) \\
& x!=(X)(X-1)(X-2) \cdots(2)(1) \\
& 0!=1 \quad \text { (by definition) }
\end{aligned}
$$

Counting Techniques Rule of Combinations

- How many possible 3 scoop combinations could you create at an ice cream parlor if you have 31 flavors to select from and no flavor can be used more than once in the 3 scoops?
- The total choices is $\mathrm{n}=31$, and we select $\mathrm{X}=3$.

$$
{ }_{31} \mathrm{C}_{3}=\frac{31!}{3!(31-3)!}=\frac{31!}{3!28!}=\frac{31 \bullet 30 \cdot 29 \cdot 28!}{3 \cdot 2 \cdot 1 \cdot 28!}=31 \cdot 5 \cdot 29=4,495
$$

Binomial Distribution Formula

$$
P(X=x \mid n, \pi)=\frac{n!}{x!(n-x)!} \pi^{x}(1-\pi)^{n-x}
$$

$P(X=x \mid n, \pi)=$ probability that $X=\mathbf{x}$ events of interest, given n and π
x = number of "events of interest" in sample, ($x=0,1,2, \ldots, n$)
n = sample size (number of trials or observations)
$\pi=$ probability of "event of interest"
$1-\pi=$ probability of not having an event of interest

Example: Flip a coin four times, let $x=\#$ heads:

$$
\begin{gathered}
n=4 \\
\pi=0.5 \\
1-\pi=(1-0.5)=0.5 \\
X=0,1,2,3,4
\end{gathered}
$$

Example:
 Calculating a Binomial Probability

What is the probability of one success in five observations if the probability of an event of interest is 0.1 ?

$$
x=1, n=5, \text { and } \pi=0.1
$$

$$
\begin{aligned}
\mathrm{P}(\mathrm{X}=1 \mid 5,0.1) & =\frac{\mathrm{n}!}{\mathrm{x}!(\mathrm{n}-\mathrm{x})!} \pi^{\mathrm{x}}(1-\pi)^{\mathrm{n}-\mathrm{x}} \\
& =\frac{5!}{1!(5-1)!}(0.1)^{1}(1-0.1)^{5-1} \\
& =(5)(0.1)(0.9)^{4} \\
& =0.32805)
\end{aligned}
$$

The Binomial Distribution Example

Suppose the probability of an invoice payment being late is 0.10 . What is the probability of 1 late invoice payment in a group of 4 invoices?

$$
\mathrm{x}=1, \mathrm{n}=4, \text { and } \pi=0.10
$$

$$
\begin{aligned}
\mathrm{P}(\mathrm{X}=1 \mid 4,0.10) & =\frac{\mathrm{n}!}{\mathrm{x}!(\mathrm{n}-\mathrm{x})!} \pi^{\mathrm{x}}(1-\pi)^{\mathrm{n}-\mathrm{x}} \\
& =\frac{4!}{1!(4-1)!}(0.10)^{1}(1-0.10)^{4-1} \\
& =(4)(0.10)(0.729) \\
& =0.2916
\end{aligned}
$$

Excel, JMP, \& Minitab Can Be Used To Calculate Binomial Probabilities

4	A	B
1	Binomial Probabilities	
2		
3	Data	
4	Sample size	4
5	Probability of an event of interest	0.1
6		
7	Parameters	
8	Mean	0.4
9	Variance	0.36
10	Standard deviation	0.6
11		
12	Binomial Probabilities Table	
13	\boldsymbol{X}	$P(X)$
14	0	0.6561
15	1	0.2916
16	2	0.0486
17	3	0.0036
18	4	0.0001

$\begin{aligned} & \Delta \quad 2 / 1 \operatorname{Cols}[\nabla] \\ & \text { 5/0 Rows } \end{aligned}$	X	$\mathrm{P}(\mathrm{X})$
1	0	0.6561
2	1	0.2916
3	2	0.0486
4	3	0.0036
5	4	0.0001

$\boldsymbol{\downarrow}$	$\mathbf{C 1}$	$\mathbf{C 2}$
	\mathbf{X}	$\mathbf{P (X)}$
$\mathbf{1}$	0	0.6561
$\mathbf{2}$	1	0.2916
$\mathbf{3}$	2	0.0486
$\mathbf{4}$	3	0.0036
$\mathbf{5}$	4	0.0001

The Binomial Distribution Shape

- The shape of the binomial distribution depends on the values of π and n.
- Here, $\mathrm{n}=5$ and $\mathrm{m}=0.1$.

- Here, $\mathrm{n}=5$ and $\pi=0.5$.

Binomial Distribution Characteristics

- Mean:

$$
\mu=\mathrm{E}(\mathrm{X})=\mathrm{n} \pi
$$

- Variance and Standard Deviation:

$$
\sigma^{2}=\mathbf{n} \pi(1-\pi)
$$

$$
\sigma=\sqrt{\mathrm{n} \pi(1-\pi)}
$$

Where $n=$ sample size
$\pi=$ probability of the event of interest for any trial
$(1-\pi)=$ probability of no event of interest for any trial

The Binomial Distribution Characteristics

Examples
$\mu=\mathrm{n} \pi=(5)(.1)=0.5$

$$
\sigma=\sqrt{\mathrm{n} \pi(1-\pi)}=\sqrt{(5)(.1)(1-.1)}
$$

$$
=0.6708
$$

The Poisson Distribution Definitions

- You use the Poisson distribution when you are interested in the number of times an event occurs in a given area of opportunity.
- An area of opportunity is a continuous unit or interval of time, volume, or such area in which more than one occurrence of an event can occur.
- The number of scratches in a car's paint.
- The number of mosquito bites on a person.
- The number of computer crashes in a day

The Poisson Distribution

- Apply the Poisson Distribution when:
- You are interested in counting the number of times a particular event occurs in a given area of opportunity. An area of opportunity is defined by time, length, surface area, and so forth.
- The probability that an event occurs in a given area of opportunity is the same for all the areas of opportunity.
- The number of events that occur in one area of opportunity is independent of the number of events that occur in any other area of opportunity.
- The probability that two or more events will occur in an area of opportunity approaches zero as the area of opportunity becomes smaller.
- The average number of events per unit is λ (lambda).

Poisson Distribution Formula

$P(X=x \mid \lambda)=\frac{e^{-\lambda} \lambda^{x}}{x!}$

where:
$x=$ number of events in an area of opportunity
$\lambda=$ expected number of events
$\mathrm{e}=$ base of the natural logarithm system (2.71828...)

Poisson Distribution Characteristics

- Mean:

$$
\mu=\lambda
$$

- Variance and Standard Deviation:

$$
\sigma^{2}=\lambda
$$

$$
\sigma=\sqrt{\lambda}
$$

where $\quad \lambda=$ expected number of events.

The Poisson Distribution Example

The mean number of customers who arrive per minute at a bank during the noon-to-1pm hour is 3.0. What is the probability that 2 customers arrive in a given minute?

$$
\mathrm{x}=2, \lambda=3.0
$$

$\mathbf{P}(\mathbf{X}=2 \mid 3.0)=\frac{e^{-\lambda} \lambda^{x}}{x!}=\frac{e^{-3.0} 3.0^{2}}{2!}$
$=\frac{9}{2.71828^{3}(2)}$
$=0.2240$

Excel \& Minitab \& JMP Can Automate Poisson Probability Calculations

The mean number of customers who arrive per minute at a bank during the noon-to- 1 pm hour is 3.0 .

$$
\lambda=3.0
$$

4	A	B		C D	E
1	Poisson Probabilities				
2					
3	Data				
4	Mean/Expected number of events of interest:				3
5			=POISSON.DIST(A8, \$E\$4, FALSE)		
6	Poisson Probabilities Table				
7	\boldsymbol{X}	$P(X)$			
8	0	0.0498			
9	1	0.1494	=POISSON.DIST(A9, \$E\$4, FALSE)		
10	2	0.2240	=POISSON.DIST(A10, \$E\$4, FALSE)		
11	3	0.2240	=POISSON.DIST(A11, \$E\$4, FALSE)		
12	4	0.1680	=POISSON.DIST(A12, \$E\$4, FALSE)		
13	5	0.1008	=POISSON.DIST(A13, \$E\$4, FALSE)		
14	6	0.0504	=POISSON.DIST(A14, \$E\$4, FALSE)		
15	7	0.0216	=POISSON.DIST(A15, \$E\$4, FALSE)		
16	8	0.0081	=POISSON.DIST(A16, \$E\$4, FALSE)		
17	9	0.0027	=POISSON.DIST(A17, \$E\$4, FALSE)		
18	10	0.0008	=POISSON.DIST(A18, \$E\$4, FALSE)		
19	11	0.0002	=POISSON.DIST(A19, \$E\$4, FALSE)		
20	12	0.0001	=POISSON.DIST(A20, \$E\$4, FALSE)		
21	13	0.0000	=POISSON.DIST(A21, \$E\$4, FALSE)		
22	14	0.0000	=POISSON.DIST(A22, \$E\$4, FALSE)		
23	15	0.0000	=POISSON.DIST(A23, \$E\$4, FALSE)		

Probability Density Function
Poisson with mean $=3$

x	$P(X=x)$
0	0.049787

0.149361
20.224042
30.224042
40.168031
50.100819
$6 \quad 0.050409$
70.021604
80.008102
$9 \quad 0.002701$
$10 \quad 0.000810$
110.000221
120.000055
$13 \quad 0.000013$
140.000003
$15 \quad 0.000001$

Graph of Poisson Probabilities

Graphically:

$\lambda=\mathbf{0 . 5 0}$	
\mathbf{x}	$\boldsymbol{\lambda}=$
0	0.50
1	0.6065
2	0.0033
3	0.0758
4	0.0126
5	0.0016
6	0.0002
7	0.0000
7	0.0000

Poisson Distribution Shape

- The shape of the Poisson Distribution depends on the parameter λ :

Chapter Summary

In this chapter we covered:

- The properties of a probability distribution.
- Computing the expected value and variance of a probability distribution.
- Computing probabilities from binomial and Poisson distributions.
- Using the binomial and Poisson distributions to solve business problems.

Chapter 6

The Normal Distribution

Objectives

In this chapter, you learn:

- To compute probabilities from the normal distribution.
- How to use the normal distribution to solve business problems.
- To use the normal probability plot to determine whether a set of data is approximately normally distributed.

Continuous Probability Distributions

- A continuous variable is a variable that can assume any value on a continuum (can assume an uncountable number of values):
- thickness of an item.
- time required to complete a task.
- temperature of a solution.
- height, in inches.
- These can potentially take on any value depending only on the ability to precisely and accurately measure.

Continuous Probability Distributions Vary By Shape

Normal Distribution

- Symmetrical
- Bell-shaped
- Ranges from negative to positive infinity
- Symmetrical
- Also known as Rectangular Distribution
- Every value between the smallest \& largest is equally likely

The Normal Distribution

- Bell Shaped.
- Symmetrical.
- Mean, Median and Mode are equal.
Location is determined by the mean, μ.
Spread is determined by the standard deviation, σ.

The random variable has an infinite theoretical range:
$-\infty$ to $+\infty$.

The Normal Distribution Shape

$f(X) \quad$ Changing μ shifts the distribution left or right.

By varying the parameters μ and σ, we obtain different normal distributions

A and B have the same mean but different standard deviations.
B and C have different means and different standard deviations.

The Normal Distribution Density Function

- The formula for the normal probability density function is:

$$
\mathrm{f}(\mathrm{X})=\frac{1}{\sqrt{2 \pi} \sigma} \mathrm{e}^{-\frac{1}{2}\left(\frac{(\mathrm{X}-\mu)}{\sigma}\right)^{2}}
$$

Where $\mathrm{e}=$ the mathematical constant approximated by 2.71828
$\pi=$ the mathematical constant approximated by 3.14159
$\mu=$ the population mean
$\sigma=$ the population standard deviation
$\mathrm{X}=$ any value of the continuous variable

The Standardized Normal

- Any normal distribution (with any mean and standard deviation combination) can be transformed into the standardized normal distribution (Z).
- To compute normal probabilities need to transform X units into Z units.
- The standardized normal distribution (Z) has a mean of 0 and a standard deviation of 1 .

Translation to the Standardized Normal Distribution

- Translate from X to the standardized normal (the "Z" distribution) by subtracting the mean of X and dividing by its standard deviation:

The Z distribution always has mean $=0$ and standard deviation $=1$.

The Standardized Normal Distribution

- Also known as the "Z" distribution.
- Mean is 0 .
- Standard Deviation is 1 .

Values above the mean have positive Z-values.
Values below the mean have negative Z-values.

Example

- If X is distributed normally with mean of 100 and standard deviation of 50 , the Z value for $X=200$ is:

$$
Z=\frac{X-\mu}{\sigma}=\frac{\$ 200-\$ 100}{\$ 50}=2.0
$$

This says that $X=200$ is two standard deviations (2 increments of 50 units) above the mean of 100 .

Comparing X and Z units

Note that the shape of the distribution is the same, only the scale has changed. We can express the problem in the original units of X or in standardized units (Z).

Finding Normal Probabilities

Probability is measured by the area under the curve.

Probability as Area Under the Curve

The total area under the curve is 1.0 , and the curve is symmetric, so half is above the mean, half is below.

The Cumulative Standardized Normal Table

The Cumulative Standardized Normal table in the textbook (Appendix table E.2) gives the probability less than a desired value of Z (i.e., from negative infinity to Z).

$$
\begin{aligned}
& \text { Example: } \\
& \mathrm{P}(\mathrm{Z}<2.00)=0.9772
\end{aligned}
$$

The Cumulative Standardized Normal Table

The column gives the value of
Z to the second decimal point.

The row shows the value of Z to the first decimal point.

Z	0.00	$0.01 \quad 0.02 \ldots$
0.0		
0.1	The value within the table gives the	
2.0	probability from $Z=-\infty$ up to the desired Z value.	

General Procedure for Finding Normal Probabilities

To find $\mathrm{P}(\mathrm{a}<\mathrm{X}<\mathrm{b})$ when X is distributed normally:

- Draw the normal curve for the problem in terms of X .
- Translate X-values to Z-values.
- Use the Cumulative Standardized Normal Table.

Finding Normal Probabilities

- Let X represent the time it takes (in seconds) to download an image file from the internet.
- Suppose X is normal with a mean of 18.0 seconds and a standard deviation of 5.0 seconds. Find $\mathrm{P}(\mathrm{X}<18.6)$.

Finding Normal Probabilities

- Let X represent the time it takes, in seconds to download an image file from the internet.
- Suppose X is normal with a mean of 18.0 seconds and a standard deviation of 5.0 seconds. Find $P(X<18.6)$:

$$
\mathrm{Z}=\frac{\mathrm{X}-\mu}{\sigma}=\frac{18.6-18.0}{5.0}=0.12
$$

Solution: Finding $\mathrm{P}(\mathrm{Z}<0.12)$

Standardized Normal Probability Table (Portion)

Z	.00	.01	.02
0.0	.5000	.5040	.5080
0.1	.5398	.5438	.5478
0.2	.5793	.5832	.5871
0.3	.6179	.6217	.6255

$$
\begin{gathered}
\mathrm{P}(\mathrm{X}<18.6) \\
=\mathrm{P}(\mathrm{Z}<0.12) \\
0.5478
\end{gathered}
$$

Finding Normal Upper Tail Probabilities

- Suppose X is normal with mean 18.0 and standard deviation 5.0.
- Now Find $P(X>18.6)$.

Finding Normal

 Upper Tail Probabilities(continued)

- Now Find P(X > 18.6).

$$
\begin{aligned}
P(X>18.6)=P(Z>0.12) & =1.0-P(Z \leq 0.12) \\
& =1.0-0.5478=0.4522
\end{aligned}
$$

Finding a Normal Probability Between Two Values

- Suppose X is normal with mean 18.0 and standard deviation 5.0. Find $\mathrm{P}(18<\mathrm{X}<18.6)$.

Calculate Z-values:

$$
\begin{aligned}
& Z=\frac{X-\mu}{\sigma}=\frac{18-18}{5}=0 \\
& Z=\frac{X-\mu}{\sigma}=\frac{18.6-18}{5}=0.12
\end{aligned}
$$

$$
\begin{gathered}
00.12 \\
P(18<X<18.6) \\
=P(0<Z<0.12)
\end{gathered}
$$

Solution: Finding $\mathrm{P}(0<\mathrm{Z}<0.12)$

Probabilities in the Lower Tail

- Suppose X is normal with mean 18.0 and standard deviation 5.0.
- Now Find $P(17.4<X<18)$.

Probabilities in the Lower Tail

Now Find $\mathrm{P}(17.4<\mathrm{X}<18)$:

$$
\begin{aligned}
& P(17.4<X<18) \\
= & P(-0.12<Z<0) \\
= & P(Z<0)-P(Z \leq-0.12) \\
= & 0.5000-0.4522=0.0478
\end{aligned}
$$

The Normal distribution is
symmetric, so this probability is the same as $\mathrm{P}(0<\mathrm{Z}<0.12)$.

Given a Normal Probability Find the X Value

- Steps to find the X value for a known probability:

1. Find the Z value for the known probability.
2. Convert to X units using the formula:

$$
X=\mu+Z \sigma
$$

Finding the X value for a Known Probability

Example:

- Let X represent the time it takes (in seconds) to download an image file from the internet.
- Suppose X is normal with mean 18.0 and standard deviation 5.0.
- Find X such that 20% of download times are less than X.

Find the Z value for 20\% in the Lower Tail

1. Find the Z value for the known probability

Standardized Normal Probability . 20% area in the lower Table (Portion) tail is consistent with a

Z		. 03	. 04	. 05	Z value of -0.84.
-0.9 1762	. 1736		
-0.8	\ldots	. 2033	. 2005		
-0.7 2327	. 2296		
					$\begin{array}{rr} ? & 18.0 \\ 0.84 & 0 \end{array}$

Finding the X value

2. Convert to X units using the formula:

$$
\begin{aligned}
X & =\mu+Z \sigma \\
& =18.0+(-0.84) 5.0 \\
& =13.8
\end{aligned}
$$

So 20% of the values from a distribution with mean 18.0 and standard deviation 5.0 are less than 13.80 .

Chapter Summary

In this chapter we discussed:

- Computing probabilities from the normal distribution.
- Using the normal distribution to solve business problems.
- Using the normal probability plot to determine whether a set of data is approximately normally distributed.

[^0]: Source: Data extracted from A. Bhalla, "Don't Misuse the Pareto Principle," Six Sigma Forum Magazine, May 2009, pp. 15-18.

