Geometry and Topology

Malik Talbi

http://faculty.ksu.edu.sa/mtalbi/

1 Connected spaces

1.1 Connected spaces

Definition 1.1 Let (X, τ) be a topological space. A separation of (X, τ) is a pair $U, V \in \tau$ such that $U, V \neq \emptyset$, $U \cap V = \emptyset$ and $U \cup V = X$. The space (X, τ) is said to be **disconnected** if there exists a separation of (X, τ) . It is said to be **connected** if there is no separation of (X, τ) .

Questions 1 Which of the following topological spaces are connected:

- 1. $\tau = \mathcal{P}(X)$ (Power of X) (Discrete topology).
- 2. $\tau = \{\emptyset, X\}$ (Indiscrete topology or trivial topology).
- 3. $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}.$
- 4. $X = [0,1] \cup [2,3], \tau$ the induced topology of \mathbb{R} .
- 5. X infinite set, $\tau = \{A \subseteq X | X \setminus A \text{ finite}\} \cup \{\emptyset\}$ (finite complement topology).

Lemma 1.2 A topological space (X, τ) is connected if and only if the only subsets of X that are both open and closed are \emptyset and X.

Recall that if $A \subseteq X$, the boundary of A is the set $\partial A = \overline{A} \setminus A^{\circ}$.

Question 2 Prove the following: A topological space (X, τ) is connected if and only if the boundary of any proper subset¹ of X is not empty.

Questions 3 If τ, τ' are two topologies on X such that (X, τ) is connected.

- 1. Is (X, τ') connected?
- 2. If τ' is finer² than τ , is (X, τ') connected?
- 3. If τ is finer than τ' , is (X, τ') connected?

¹Proper subset means neither equal to X nor equal to \emptyset .

²Recall that τ' is said to be **finer** than τ or τ is said to be **coarser** than τ' if $\tau \subseteq \tau'$.

1.2 Connected subspaces

Recall that $x \in X$ is called a **limit point** (or "cluster point" or "point of accumulation") of $A \subseteq X$ if $\forall U \in \tau$, if $x \in U$ then $U \cap A \setminus \{x\} \neq \emptyset$.

Questions 4 Let us denote by A' the set of limit points of A.

- 1. What is A' for the following sets $A \subseteq \mathbb{R}$: $A = [0,1], A = (0,1), A = [0,1] \cup \{2\}$.
- 2. Prove that if (X, τ) is a topological space and $A \subseteq X$ then the closure of A satisfies $\overline{A} = A \cup A'$.
- 3. Prove that if (X, τ) is a topological space and $A \subseteq X$ then A is closed if and only if $A' \subseteq A$.

Here is another formulation of the definition of separation for subspace Y of a topological space X (with the induced topology):

Lemma 1.3 If $Y \subseteq X$, a separation of Y is a pair $A, B \subset Y$ such that $A, B \neq \emptyset$, $A \cap B = \emptyset$, $A \cup B = Y$ and neither A contains limit points of B nor B contains limit points of A.

Questions 5 Are the following separations:

- 1. For Y = [-1, 1] with the induced topology of \mathbb{R} , A = [-1, 0], B = (0, 1].
- 2. For $Y = [-1,0) \cup (0,1]$ with the induced topology of \mathbb{R} , A = [-1,0) and B = (0,1].
- 3. For $Y = \{1, 2\}$ with the induced finite complement topology of \mathbb{N} , $A = \{0\}$ and $B = \{2\}$.
- 4. For $Y = 2\mathbb{N} = \{2, 4, 6, \dots\}$ with the induced finite complement topology of \mathbb{N} , $A = \{2\}$ and $B = \{4, 6, 8, \dots\}$.
- 5. For $Y = A \cup B$ where $A = \mathbb{R} \times \{0\}$ and $B = \{(x, 1/x) | x > 0\}$ with the induced topology of \mathbb{R}^2 .
- 6. Is \mathbb{Q} connected for the induced topology of \mathbb{R} ?

Lemma 1.4 Let (X, τ) be a topological space and U, V be a separation of X. If $Y \subset X$ is connected then either $Y \subseteq U$ or $Y \subseteq V$.

Theorem 1.5 Let (X, τ) be a topological space and $\{Y_i\}_{i \in I}$ be a family of connected subspaces of X. If $\bigcap_{i \in I} Y_i \neq \emptyset$ then $\bigcup_{i \in I} Y_i$ is connected.

Theorem 1.6 Let (X, τ) be a topological space and $Y_1, Y_2, \dots, Y_k, \dots$ be a family of connected subspaces of X. If $Y_i \cap Y_{i+1} \neq \emptyset, \forall i = 1, 2, \dots$ then $Y_1 \cup Y_2 \cup \dots \cup Y_k \cup \dots$ is connected.

Theorem 1.7 Let (X, τ) be a topological space and Y be a connected subspace of X. If $Y \subseteq Z \subseteq \overline{Y}$, then Z is connected.

Question 6 Let Y be a subset of X and Z be a connected subspace of X. Prove that if $Z \cap Y^{\circ} \neq \emptyset$ and $Z \cap (X - Y)^{\circ} \neq \emptyset$ then $Z \cap \partial Y \neq \emptyset$ where ∂Y is the boundary of Y.

1.3 Totaly disconnected spaces

Definition 1.8 A topological space (X, τ) is said to be totaly disconnected if the only connected subspaces are singletons.

Questions 7 1. Is \mathbb{Q} totaly disconnected?

- 2. Is a discrete space totaly disconnected?
- 3. Is a totaly disconnected space discrete?
- 4. Is a finite totaly disconnected space discrete?

1.4 Connectedness and continuity

Theorem 1.9 The image of a connected space under a continuous map is connected.

Question 8 Let (X, τ) be a topological space and Y be a totaly disconnected space. Prove that X is connected if and only if any continuous map $f : X \to Y$ is constant.

1.5 Connectedness and constructions

Questions 9 1. Is the union of connected subspaces connected?

- 2. Is the intersection of connected subspaces connected?
- 3. Is the interior of a connected subspace connected?
- 4. Is the closure of a connected subspace connected?
- 5. Is the boundary of a connected subspace connected?

Theorem 1.10 The finite cartesian product of connected spaces is connected.

Recall that for the infinite cartesian product $X = \prod_{i \in I} X_i$ we have two natural topologies:

• The box topology whose basis is
$$\left\{\prod_{i\in I} U_i | U_i \in \tau_i, i \in I\right\}$$
.

• The product topology whose basis is

$$\left\{\prod_{i\in I} U_i | \exists J \stackrel{\subset}{finite} I \text{ finite s.t. } U_i \in \tau_i \text{ if } i \in J \text{ and } U_i = X_i \text{ if not} \right\}.$$

It is clear that the box topology is finer than the product topology.

Theorem 1.11 The infinite cartesian product of connected spaces is connected for the product topology.

Sketch of the proof. Fix $\{a_i\}_{i \in I}$ an element of $\prod_{i \in I} X_i$. For $J \subset_f I$ a finite subset of I define $X_J = \left\{ \{x_i\}_{i \in I} \in \prod_{i \in I} X_i \text{ s.t. } x_i = a_i, \forall i \notin J \right\}$. The set X_J is homeomorphic to $\prod_{j \in J} X_j$ and hence is connected. The intersection $\bigcap_{J \subset_f I} X_J = \{\{a_i\}_{i \in I}\} \neq \emptyset$. Then $\bigcup_{J \subset_f I} X_J$ is connected.

The closure of $\bigcup_{J \subset_f I} X_J$ for the product topology is $\prod_{i \in I} X_i$ so $\prod_{i \in I} X_i$ is connected for the product topology.

Question 10 Let $X = \mathbb{R}^{\mathbb{N}} = \prod_{n \in \mathbb{N}} \mathbb{R}$ be the set of real sequences. Let $Y \subset X$ be the set of bounded real sequences.

- 1. Prove that Y is an open and closed subset of X for the box topology.
- 2. Is X connected for the box topology?

Question 11 Show that if a cartesian product $\prod_{i \in I} X_i$ is connected then the spaces $X_i, i \in I$ are all connected.

1.6 Connected subsets in \mathbb{R}

Recall that an interval $A \subseteq \mathbb{R}$ is a subset which satisfies $\forall a < b \in A$, if a < c < b then $c \in A$.

Theorem 1.12 A subset $A \subseteq \mathbb{R}$ is connected if and only if A is an interval.

As consequences of this theorem:

Theorem 1.13 (The intermediate value) Let $f : [a,b] \to \mathbb{R}$ be a continuous function. If $y_0 \in]f(a), f(b)[$ the non oriented open interval then $\exists c \in]a, b[$ such that $f(c) = y_0$.

Theorem 1.14 Any continuous function $f : [a, b] \to \mathbb{Z}$ is constant.

To generalize this theorem, let us recall the following definitions:

Definition 1.15 Let X be a set and $\mathcal{R} \subseteq X \times X$ be a binary relation on X.

- The relation \mathcal{R} is called a **linear order** or a **simple order** if it satisfies the following axioms:
 - 1. For all $x, y \in X$ we have: $x \neq y$ if and only if either $x \mathcal{R} y$ or $y \mathcal{R} x$.
 - 2. For all $x, y, z \in X$, if $x \mathcal{R} y$ and $y \mathcal{R} z$ then $x \mathcal{R} z$.
- If \mathcal{R} is a linear order on X and $Y \subseteq X$ and $x \in X$ then Y is said to be **bounded** above by x (or x is said to be an **upper bound** of Y) if $\forall y \in Y$, $y\mathcal{R}x$ or y = x. The element $x \in X$ is said to be a **least upper bound** of Y if $\forall x' \in X$, if x' is an upper bound of Y then $x\mathcal{R}x'$ or x = x'.
- If \mathcal{R} is a linear order on X then it is said to have the **least upper bound property** if $\forall Y \subseteq X$ if Y is bounded above then Y has a least upper bound.
- A linear continuum on X is a linear order \mathcal{R} which has the least upper bound property and satisfies moreover the property: Let $x, y \in X$. If $x\mathcal{R}y$ then $\exists z \in X$ such that $x\mathcal{R}z$ and $z\mathcal{R}y$.
- If \mathcal{R} is a linear order on X an **open interval** is a subset of the form

$$]x, y[=\{z \in X, s.t. x \mathcal{R}z and z \mathcal{R}y\}$$

for $x, y \in X$.

- If \mathcal{R} is a linear order on X the order topology on $(X.\mathcal{R})$ is the topology defined by the basis \mathcal{B} whose elements are intervals $]x, y[, \{x_0\} \cup]x_0, y[$ and $]x, y_0[\cup \{y_0\}$ for $x, y \in X$ and x_0 a lower bound of X and y_0 an upper bound of X if they exist.
- **Examples 12** 1. $(\mathbb{Q}, <)$ is a linear order but does not have the least upper bound property.
 - 2. $[0,1] \times \{0,1\}$ with the dictionary order $((a,b) <_{dic} (a',b')$ iff a < a' or a = a' and b < b' is a linear order with the least upper bound property but is not a linear continuum.
 - 3. $(\mathbb{R}, <)$ is a linear continuum and also $\mathbb{C} = \mathbb{R}^2$ with the dictionary order $<_{dic}$.
 - the order topology on (ℝ, <) is the natural topology but the order topology on C with the dictionary order <_{dic} is not the natural topology.

Theorem 1.16 Let (X, <) be a linear continuum. The subset $Y \subseteq X$ is connected if and only if Y is an interval.

1.7 Path connected spaces

Definition 1.17 Let (X, τ) be a topological space.

- Let $x, y \in X$. A path from x to y is a continuous map $f : [a, b] \to X$ such that f(a) = x and f(b) = y.
- The space (X, τ) is called path connected if for any $x, y \in X$ there is a path from x to y.

Theorem 1.18 Let (X, τ) be a topological space. If X is path connected then X is connected.

Examples 13 There are some connected spaces which are not path connected:

1. The deleted comb space:

$$C = \{(0,1)\} \cup \{(x,0), s.t. \ x \in [0,1]\} \cup \left\{ \left(\frac{1}{n}, y\right), s.t. \ n \in \mathbb{N}, y \in [0,1] \right\}$$

2. The topologist's sine curve:

$$S = \{(0, y), s.t. \ y \in [-1, 1]\} \cup \left\{ \left(x, \sin \frac{1}{x}\right), s.t. \ x > 0 \right\}.$$

Theorem 1.19 Let $f : X \to Y$ be a continuous map. If X is path connected then f(X) is path connected.

- **Questions 14** 1. Let $U \subseteq \mathbb{R}$. Prove that if $U \cap [a, b]$ is open for the induced topology of \mathbb{R} on [a, b] and $U \cap [b, c]$ is open for the induced topology of \mathbb{R} on [b, c] then $U \cap [a, c]$ is open for the induced topology of \mathbb{R} on [a, c].
 - 2. Deduce that if $f : [a,b] \to X$ and $g : [b,c] \to X$ are continuous and f(b) = g(b) then the map $h = f * g : [a,c] \to X$ defined by h(t) = f(t) if $a \le t \le b$ and h(t) = g(t) if $b \le t \le c$ is continuous.

Theorem 1.20 Let (X, τ) be a topological space and $\{Y_i\}_{i \in I}$ be a family of path connected subspaces of X. If $\bigcap_{i \in I} Y_i \neq \emptyset$ then $\bigcup_{i \in I} Y_i$ is path connected.

Theorem 1.21 Let (X, τ) be a topological space and $Y_1, Y_2, \cdots, Y_k, \cdots$ be a family of path connected subspaces of X. If $Y_i \cap Y_{i+1} \neq \emptyset$, $\forall i = 1, 2, \cdots$ then $Y_1 \cup Y_2 \cup \cdots \cup Y_k \cup \cdots$ is path connected.

Questions 15 Let (X, τ) be a topological space and Y be a path connected subspace of X.

- 1. If $Y \subseteq Z \subseteq \overline{Y}$, is Z path connected?
- 2. Is \overline{Y} path connected?

- 3. If $Z \subseteq X$ such that $Y \cap Z^{\circ} \neq \emptyset$ and $Y \cap (X Z)^{\circ} \neq \emptyset$ is $Y \cap \partial Z \neq \emptyset$?
- 4. Is the union of path connected sets path connected?
- 5. Is the intersection of path connected sets path connected?
- 6. Is the interior of a path connected set path connected?

Theorem 1.22 The finite cartesian product of path connected sets is path connected.

- **Questions 16** 1. Is the infinite cartesian product of path connected sets path connected for the box topology?
 - 2. Is the infinite cartesian product of path connected sets path connected for the product topology?

1.8 Components and path components

Definition 1.23 Let (X, τ) be a topological space. We define on X two relations. If $x, y \in X$ then

- 1. $x \sim y$ iff $\exists Y \subseteq X$ connected such that $x, y \in Y$.
- 2. $x \sim_p y$ iff $\exists Y \subseteq X$ path connected such that $x, y \in Y$.

Lemma 1.24 The relations \sim and \sim_p are equivalence relations.

Definition 1.25 The equivalence classes of \sim are called components of X or connected components of X.

The equivalence classes of \sim_p are called **path components** of X or **path connected** components of X.

Theorem 1.26 Let X be a topological space. The components of X have the following properties:

- 1. They form a partition of X.
- 2. Any connected subset of X is contained in one of these components.
- 3. These components are connected.
- 4. These components are closed.

Theorem 1.27 Let X be a topological space. The path components of X have the following properties:

- 1. They form a partition of X.
- 2. Any path connected subset of X is contained in one of these path components.

3. These path components are path connected.

Questions 17 1. What are components of \mathbb{Q} ?

- 2. What are components of a totally disconnected space?
- 3. Are components open?
- 4. Are path components open?
- 5. What are the components of the topologist's sine curve?
- 6. What are the path components of the topologist's sine curve?
- 7. Are path components closed?
- 8. What are the components and the path components of the deleted comb space?

1.9 Local connectedness

Definition 1.28 Let X be a topological space. Let $x \in X$. We say that X is **locally** (path) connected at x if for any U open subset of X containing x there exists V a (path) connected neighbourhood of x contained in U ($x \in V \subseteq U$). We say that X is **locally** (path) connected if it is locally (path) connected at all $x \in X$.

Remark 1.29 If \mathcal{B} is a basis of the topology of X then X is locally (path) connected at $x \in X$ iff $\forall U \in \mathcal{B}$, if $x \in U$, $\exists V \subseteq X$ (path) connected, $\exists U' \in \mathcal{B}$ such that $x \in U' \subseteq V \subseteq U$.

Remark 1.30 If X is locally path connected at $x \in X$ then it is locally connected at x.

Questions 18 1. Is \mathbb{R} locally (path) connected?

- 2. Is $[0,1] \cup [2,3]$ locally (path) connected?
- 3. Is a discrete space locally connected? locally path connected?
- 4. Is N with the complement finite topology locally connected? path connected? locally path connected?
- 5. The deleted comb space is connected but not locally connected.
- 6. What about the topologist's sine curve?
- 7. If $X = C \cup \{(0, 1/n), n \in \mathbb{N}\}$, where C is the deleted comb space then X is locally connected at (0, 0) but not locally path connected at (0, 0).

Theorem 1.31 Let X be a topological space. X is locally connected if and only if the components of any open subset of X are open.

Corollary 1.32 If X is locally connected then the components of X are open.

Example 19 The space \mathbb{Q} is not locally connected and any totally disconnected space which is not discrete is not locally connected.

Theorem 1.33 Let X be a topological space. X is locally path connected if and only if the path components of any open subset of X are open.

Theorem 1.34 Let X be a topological space. Any path component of X lies in a component of X. Moreover, if X is locally path connected then the components of X are precisely the path components of X.