EE:211

Computational Techniques in Electrical Engineering

Lab\#2(II)

Interpolation using Divided Difference and Newton's Formula

1. As a starting example we will construct the divided difference table as given in lecture slides for the following data points $x=\left[\begin{array}{lllll}1 & 1.1 & 1.2 & 1.3 & 1.4\end{array}\right]$ and $y=\left[\begin{array}{llll}0.5403 & 0.45360 & 0.36236 & 0.26750\end{array}\right.$ $0.16997]$. The divided difference table for these data points is given below:

i	x_{i}	$\mathrm{y}=\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{D}^{1} \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{D}^{2} f\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{D}^{3} \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{D}^{4} \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)$
0	1.0	0.54030	-0.8670	-0.2270	0.15333	0.0125
1	1.1	0.45360	-0.9124	-0.1810	0.15830	0
2	1.2	0.36236	-0.9486	-0.1335	0	0
3	1.3	0.26750	-0.9753	0	0	0
4	1.4	0.16997	0	0	0	0

2. In order to construct the Newton polynomial in MATLAB, we would want to first construct the divided difference table. We can do this by storing the values in the rows of a 5×5 matrix D .

The first column of D, referenced in MATLAB as $\mathbf{D}(:, \mathbf{1})$, will store the function values at the interpolating points.
The second column of $\mathrm{D}-\mathrm{D}(:, 2)$-- will store the first divided differences.
The third column of $\mathrm{D}-\mathrm{D}(:, 3)$-- will store the second divided differences.
The fourth column of $\mathrm{D}-\mathrm{D}(:, 4)$-- will store the third divided differences.
The fifth column of $\mathrm{D}-\mathrm{D}(:, 5)$-- will store the fourth divided difference.
The entries in the matrix D will be:

$\mathbf{D}(:, \mathbf{1})$	$\mathbf{D}(: \mathbf{2})$	$\mathbf{D}(: \mathbf{3})$	$\mathbf{D}(:, \mathbf{4})$	$\mathbf{D}(:, 5)$
$\mathrm{D}(1,1)=0.54030$	$\mathrm{D}(1,2)=-0.8670$	$\mathrm{D}(1,3)=-0.2270$	$\mathrm{D}(1,4)=0.15333$	$\mathrm{D}(1,5)=0.0125$
$\mathrm{D}(2,1)=0.45360$	$\mathrm{D}(2,2)=-0.9124$	$\mathrm{D}(2,3)=-0.1810$	$\mathrm{D}(2,4)=0.15830$	$\mathrm{D}(2,5)=0$
$\mathrm{D}(3,1)=0.36236$	$\mathrm{D}(3,2)=-0.9486$	$\mathrm{D}(3,3)=-0.1335$	$\mathrm{D}(3,4)=0$	$\mathrm{D}(3,5)=0$
$\mathrm{D}(4,1)=0.26750$	$\mathrm{D}(4,2)=-0.9753$	$\mathrm{D}(4,3)=0$	$\mathrm{D}(4,4)=0$	$\mathrm{D}(4,5)=0$
$\mathrm{D}(5,1)=0.16997$	$\mathrm{D}(5,2)=0$	$\mathrm{D}(5,3)=0$	$\mathrm{D}(5,4)=0$	$\mathrm{D}(5,5)=0$

3. Create a 5×5 matrix D initially with all zeros:
>> $\mathrm{D}=\operatorname{zeros}(5,5)$;
4. Set up the vector X and Y with the x -coordinates of the interpolating values:
>> $\mathrm{X}=\left[\begin{array}{lllllll}1 & 1.1 & 1 & 1.2 & 1 & 1.3 & 1.4\end{array}\right] ;$
>> Y $=\left[\begin{array}{lll}0.5403 & 0.45360 & 0.362360 .267500 .16997\end{array}\right] ;$
These enetries will be stored as:
For X as:

$\mathrm{X}(1)=1$	$\mathrm{X}(2)=1.1$	$\mathrm{X}(3)=1.2$	$\mathrm{X}(4)=1.3$	$\mathrm{X}(5)=1.4$

If you run this on Matlab command window
>>X(3)
ans $=1.2$
>>X(1:3)
ans $=11.11 .2$

And for Y as:

$\mathrm{Y}(1)=0.5403$	$\mathrm{Y}(2)=0.45360$	$\mathrm{Y}(3)=0.36236$	$\mathrm{Y}(4)=0.26750$	$\mathrm{Y}(5)=0.16997$

5. Now start computing the divide differences column by column for the matrix D The first column is just the values of the function at the interpolating points, stored in Y :
» $\mathrm{D}(:, 1)=\mathrm{Y} ;$
6. We next work on the second column of \mathbf{D}-- starting in first row $(\mathbf{D}(1,2)$) and working down to fourth row:
$\gg \mathrm{D}(1,2)=(\mathrm{D}(2,1)-\mathrm{D}(1,1)) /(\mathrm{X}(2)-\mathrm{X}(1))$;
$\gg \mathrm{D}(2,2)=(\mathrm{D}(3,1)-\mathrm{D}(2,1)) /(\mathrm{X}(3)-\mathrm{X}(2)) ;$
$\gg \mathrm{D}(3,2)=(\mathrm{D}(4,1)-\mathrm{D}(3,1)) /(\mathrm{X}(4)-\mathrm{X}(3)) ;$
$\gg \mathrm{D}(4,2)=(\mathrm{D}(5,1)-\mathrm{D}(4,1)) /(\mathrm{X}(5)-\mathrm{X}(4)) ;$
7. Fill the remaining column by using the following commands:
$\gg \mathrm{D}(1,3)=(\mathrm{D}(2,2)-\mathrm{D}(1,2)) /(\mathrm{X}(3)-\mathrm{X}(1)) ;$
```
>> D(2,3)=(D(3,2)-D(2,2))/(X(4)-X(2));
>> D(3,3)=(D(4,2)-D(3,2))/(X(5)-X(3));
>> D(1,4)=(D(2,3)-D(1,3))/(X(4)-X(1));
>> D}(2,4)=(\textrm{D}(3,3)-\textrm{D}(2,3))/(\textrm{X}(5)-\textrm{X}(2))
>> D}(1,5)=(D(2,4)-D(1,4))/(X(5)-X(1))
```

The final matrix D will have the following form:

$\gg \mathrm{D}$
$\mathrm{D}=$
0.5403

8. We can now construct the Newton Polynomials of degrees 1 through 4 recursively as follows:
$\gg \mathrm{P} 1=[0 \mathrm{D}(1,1)]+\mathrm{D}(1,2)^{*} \operatorname{poly}(\mathrm{X}(1))$
$\mathrm{P} 1=$
$-0.8670 \quad 1.4073$
And also you can go to higher polynomials like this.
