Computational Techniques in Electrical Engineering

Lab\#2

Polynomial Interpolation using Matlab-I

1. Use of Matlab command polyfit () to implement polynomial interpolation and use of polyval () to evaluate the polynomial.

To see what the function polyfit() does, type this at Matlab command window:

>> help polyfit

And it gives the following definition:
$P=\operatorname{POLYFIT}(X, Y, N)$ finds the coefficients of a polynomial $\mathbf{P}(X)$ of degree \mathbf{N} that fits the data Y best in a least-squares sense. P is a row vector of length $N+1$ containing the polynomial coefficients in descending powers, $\mathrm{P}(1)^{*} \mathrm{X}^{\wedge} \mathrm{N}+\mathrm{P}(2)^{*} \mathrm{X}^{\wedge}(\mathrm{N}-1)+\ldots+\mathrm{P}(\mathrm{N}) * \mathrm{X}+$ $\mathrm{P}(\mathrm{N}+1)$.

Let's implement the Example 4.1.1 on page: 119 of the textbook, which implement the linear interpolation for the data points, $x=[1,4], y=[1,2]$. If we simplify the equation (4.2) then we get the following polynomial:
$P_{1}(x)=0.333 x+0.667 \quad$-------- equation(1)
To determine the above polynomial representation uses the following Matlab code:

```
>> x= [1,4], y= [1, 2]
>> pl=polyfit(x,y,1)
    p1=0.3333 0.6667
```

This give the coefficient for linear interpolation polynomial (use $n=1$) as given in equation (1), Suppose we want to evaluate this polynomial as given by equation (1) at $x=2$, i.e. $P_{1}(2)=1.3333$. We can use the Matlab command polyval () to evaluate the polynomial at any point x. For the p1 coefficient calculated above use the following code to evaluate the above polynomial at $\mathrm{x}=2$.
>> $\mathrm{y}=\operatorname{polyval(p1,2)} \mathrm{y}=1.3333$
Consider the Example 4.1.3 on page:121, which determine the quadratic polynomial for the data points $x=\left[\begin{array}{lll}0 & 1 & 2\end{array}\right]$ and $y=\left[\begin{array}{lll}-1 & -1 & 7\end{array}\right]$. The simplified equation (4.9) is given below:
$P_{2}(x)=4 x^{2}-4 x-1 \quad------$ equation (2)
To find the $\mathrm{P}_{2}(\mathrm{x})$ representation (in terms of coefficient) use the following code:
$\gg x=\left[\begin{array}{lll}0 & 1 & 2\end{array}\right], y=\left[\begin{array}{lll}-1 & -1 & 7\end{array}\right]$
>> p2=polyfit($\mathrm{x}, \mathrm{y}, 2$)
$\mathrm{p} 2=4 \quad-4 \quad-1$

2. Constructing the Lagrange Interpolating Polynomial using Matlab

1. In order to construct the Lagrange Coefficients for the Lagrange Polynomial in MATLAB, we can use the built-in function poly, which constructs a polynomial with given roots.
Enter the following to construct a polynomial with roots 1 and 2 for example:
" poly([1 2])
ans =
1-3 2
Thus, this is the polynomial $(x-1)(x-2)=x^{2}-3 x+2$ which has roots 1 and 2 .
2. Consider the Example 4.1.3, page 121 which construct Lagrange interpolating polynomial of degree two (quadratic) approximating the data points $[(0,-1),(1,-1),(2,7)]$ Consider the Lagrange basis function $L_{0}(x)$ given as

$$
L_{0}(x)=\frac{(x-1)(x-2)}{(0-1)(0-2)}
$$

We can see that we need the numerator to be the polynomial with roots $x_{1}=1$, and $x_{2}=2$, i.e. $(x-1)(x-2)$ The denominator is the constant $\left(x_{0}-x_{1}\right)^{*}\left(x_{0}-x_{2}\right)=(0-1)^{*}(0-2)=2$.

Assuming that we want to store the Lagrange coefficient polynomials in the 3×3 array (matrix) L (with the 1st row being the coefficients for $L_{0}(x)$, the 2 nd row being the coefficients for $L_{1}(x)$, and the third row being the coefficients for $L_{2}(x)$), we proceed as follows:

```
>> L(1,:)= poly([1 2])/((0-1)*(0-2))
L=0.5000 -1.5000 1.0000
>> L(2,:)= poly([0 2])/((1-0)*(1-2))
L=0.5000 -1.5000 1.0000
    -1.0000 2.0000 0
```

```
>> L(3,:)= poly([0 1])/((2-0)*(2-1))
    L =
    0.5000-1.5000 1.0000
    -1.0000 2.0000 0
    0.5000 -0.5000 0
```

The final Lagrange polynomial is: $P_{2}(x)=y_{0}{ }^{*} L_{0}(x)+y_{1}{ }^{*} L_{1}(x)+y_{2}{ }^{*} L_{2}(x)$. We compute the $\mathrm{P}_{2}(\mathrm{x})$ as: $\gg P=(-1)^{*} L(1,:)+(-1)^{*} L(2,:)+(7)^{*} L(3,:)$
$\begin{array}{lll}\mathrm{P}=4 & -4 & -1\end{array}$
This has the same coefficient as equation (2) above.
To evaluate the polynomial at 2 we use:
>> polyval($\mathrm{P}, 2$)
ans $=7$

