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Computational Techniques in Electrical Engineering 

Lab#2 

Polynomial Interpolation using Matlab-I 

1. Use of Matlab command polyfit ( ) to implement polynomial interpolation and use of 

polyval ( ) to evaluate the polynomial. 

To see what the function polyfit( ) does, type this at Matlab command window: 

>> help polyfit 

And it gives the following definition: 

P = POLYFIT(X,Y,N) finds the coefficients of a polynomial P(X) of degree N that fits the 

data Y best in a least-squares sense. P is a row vector of length N+1 containing the 

polynomial coefficients in descending powers, P(1)*X^N + P(2)*X^(N-1) +...+ P(N)*X + 

P(N+1). 

Let’s implement the Example 4.1.1 on page: 119 of the textbook, which implement the linear 

interpolation for the data points, x= [1, 4], y= [1, 2]. If we simplify the equation (4.2) then we get 

the following polynomial: 

P1(x)=0.333x+0.667        --------  equation(1) 

To determine the above polynomial representation uses the following Matlab code: 

>> x= [1, 4], y= [1, 2] 

>> p1=polyfit(x,y,1) 

     p1 = 0.3333    0.6667 

This give the coefficient for linear interpolation polynomial (use n=1) as given in equation (1), 

Suppose we want to evaluate this polynomial as given by equation (1) at x=2, i.e. P1(2)= 1.3333. 

We can use the Matlab command polyval ( ) to evaluate the polynomial at any point x. For the 

p1 coefficient calculated above use the following code to evaluate the above polynomial at x=2. 

>> y=polyval(p1,2)  y =1.3333 

Consider the Example 4.1.3 on page:121, which determine the quadratic polynomial for the data 

points x=[ 0 1 2] and y=[-1 -1 7]. The simplified equation (4.9) is given below: 



P2(x)=4x
2
-4x-1        -------- equation(2) 

To find the P2(x) representation (in terms of coefficient) use the following code: 

>> x=[ 0 1 2] , y=[-1 -1 7] 

>> p2=polyfit(x,y,2) 

p2 = 4    -4    -1 

 

2. Constructing the Lagrange Interpolating Polynomial using Matlab 

1. In order to construct the Lagrange Coefficients for the Lagrange Polynomial in MATLAB, 

we can use the built-in function poly, which constructs a polynomial with given roots.  

Enter the following to construct a polynomial with roots 1 and 2 for example:  

» poly([1 2])  
ans =  
1  -3  2  

Thus, this is the polynomial (x-1)(x-2) = x
2 
-3x +2 which has roots 1 and 2.  

2. Consider the Example 4.1.3, page 121 which construct Lagrange interpolating 

polynomial of degree two (quadratic) approximating the data points [(0,-1),(1,-1),(2,7)] 

Consider the Lagrange basis function L0(x) given as 

      
           

          
 

 We can see that we need the numerator to be the polynomial with roots x1 = 1, and x2 = 2, i.e.  

(x -1)(x-2) The denominator is the constant (x0 -x1)*(x0-x2) = (0-1)*(0-2) = 2. 

Assuming that we want to store the Lagrange coefficient polynomials in the 3x3 array (matrix) L 

(with the 1st row being the coefficients for L0(x), the 2nd row being the coefficients for L1(x), and 

the third row being the coefficients for L2(x) ), we proceed as follows: 

>> L(1,:)= poly([1  2])/((0 - 1)*(0 - 2)) 

L = 0.5000   -1.5000    1.0000 

>> L(2,:)= poly([0  2])/((1 - 0)*(1 - 2)) 

L = 0.5000   -1.5000    1.0000 

     -1.0000    2.0000         0 



>> L(3,:)= poly([0  1])/((2 - 0)*(2 - 1)) 

     L = 

     0.5000   -1.5000    1.0000 

   -1.0000    2.0000         0 

    0.5000   -0.5000         0 

The final Lagrange polynomial is:   P2(x)= y0*L0 (x)+ y1*L1(x)+y2*L 2(x). We compute the P2(x) as: 

>> P = (-1)*L(1,:) + (-1)*L(2,:) + (7)*L(3,:) 

P = 4    -4    -1  

This has the same coefficient as equation (2) above. 

To evaluate the polynomial at 2 we use: 

>> polyval(P,2) 

ans =7 

 

 

 

 

 

 

 


