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Chapter 2: Electrostatics  

 

If we have some electric charges, q1, q2, q3, . . . (called source charges), exerting 

electric forces on another charge, Q (called test charge), the interaction between 

any two charges is completely unaffected by the presence of others. This means 

that to determine the total electric force on Q, we can first calculate the force F1, 

due to q1 alone (ignoring all the others); then we calculate the force F2, due to q2 

alone; and so on. Finally, we take the vector sum of all these individual forces: F = 

F1 + F2 + F3 + . . . (the principle of superposition)  

 

 
 

2.1 Coulomb’s Law 

 

The force between two stationary electric point charges q and Q is found 

experimentally to be: 

  

The constant εo is called the permittivity of free space.  

In SI units, where force is in newtons (N), distance in meters (m), and charge in 

coulombs (C), 

 

The Coulomb constant ke in SI units has the value ke = 8.9876 ×109  N ‧ m2/C2 

Where  
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The charge on an electron (- e) or a proton (+ e), has a magnitude: 

 

 
 

The electric force: 

• acts along the line joining the two charges 

• is proportional to the product of the charges and inversely proportional to 

the square of the separation distance 

 

    

 

Example 2.1 

The electron and proton of a hydrogen atom are separated by a distance of 

approximately 5.3×10-11 m. Find the ratio of the magnitude of the electric force to 

the magnitude of the gravitational force between the two particles. 
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Example 2.2 

Consider three point charges located at the corners of a right triangle as shown in 

the following figure, where q1 = q3 = 5 C, q2 = -2 C, and a = 0.1 m. Find the 

resultant force exerted on q3 . 

 

 

 

 

 

 

Example 2.3 

Twelve equal charges, q, are situated at the corners of a regular 12-sided polygon. 

(a) What is the net force on a test charge Q at the center? 

(b) Suppose one of the 12 q’s is removed (the one at “6 o’clock”). What is the 

force on Q? 
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2.2 The Electric Field 

If we have several point charges q1, q2, . . . , qn, at distances r1, r2, . . . , rn from 

Q, the total force on Q is: 

 

We can write the total force as: 

 

Where 

 

E(r) is called the electric field of the source charges. Notice that: 

• It is a function of position (r), because the separation vectors ri depend on 

the location of the field point P  

• It is a vector quantity that varies from point to point and is determined by the 

configuration of source charges. 

• The electric field makes no reference to the test charge Q, but it is the force 

per unit charge that would be exerted on a test charge, if you were to place 

one at the field point P. 
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Example 2.4 

Find the electric field a distance Y above the midpoint between two equal charges 

(q), a distance d apart. 
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2.3 Continuous Charge Distributions 

If the charge is distributed continuously over some region, the sum becomes an 

integral 

 

 

• If the charge is spread out along a line (see the following figure b), with 

charge-per-unit-length λ, then dq = λ dlˊ  (where dlˊ is an element of 

length along the line);  

• If the charge is spread out over a surface (figure c), with charge per unit area 

σ, then dq = σ daˊ (where daˊ is an element of area on the surface).  

• If the charge fills a volume (figure d), with charge per unit volume ρ, then 

dq = ρ dτˊ  (where dτˊ is an element of volume). 

 
 

 

The electric field of a line charge is 

 

for a surface charge 
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and for a volume charge, 

 

 

Example 2.5 

Find the electric field a distance Y above the midpoint of a straight line segment of 

length L that carries a uniform line charge λ 
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Example 2.6 

Find the electric field a distance Y above the center of a circular loop of radius a 

that carries a uniform line charge λ. 

 

 

 

 

 

 

Example 2.7 

Find the electric field a distance Y above the center of a flat circular disk of radius 

R that carries a uniform surface charge σ. What does your formula give in the 

limit R→∞ ?  

 

 

 
 

 

 

 

 

 

 

  

 



9 
 

2.4 Field Lines 

From the previous discussion the electric field for a single point charge q can be 

calculated from the following formula:  

 

Representative vectors can be sketched, as shown in the following figure. The 

vectors point radially outward and the field falls off like 1/r 2 (the vectors become 

shorter when go farther away from the origin) 

 

 
 

But it is nicer to connect up the arrows to represent field lines: 

 

• The strength of the field, which was previously contained in the length of the 

vector line, can be indicated here by the density of the field lines. It is strong 

near the center where the field lines are close together and weak farther out 

where they are relatively far apart. Therefore, the magnitude of the field is 

indicated by the density of the field lines. 

• The direction of the electric field vector E is tangent to the electric field line 

at each point.  

• Field lines begin on positive charges and end on negative charges.  

• Field lines cannot simply terminate in midair.  

• Field lines can never cross. 
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For opposite charges  

 

 

 

2.5 Electric Flux and Gauss’s Law 

  
The total number of lines penetrating the surface (of area a) is  proportional to the 

product E‧a  

This product of the electric field E and surface area  a  perpendicular to the field is 

called the electric flux ΦE 

 

 



11 
 

If the electric field is constant over the surface area then the electric flux becomes 

 

ΦE = E ‧ a = E a cos θ 

 

 

 

If the electric field is not constant over the surface area then the electric flux 

becomes: 

 

iia
E aE  

→ 0
lim  

 

 

 =
surface

E daE  

 

The unite of electric flux in SI system is   Nm2 / C 

 

Let us consider a positive point charge q located at the center of a closed surface 

which is here a sphere of radius r and we call this surface (Gaussian surface) 
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The magnitude of the electric field everywhere on the surface of the sphere is 

constant and the field lines are directed radially outward and perpendicular to the 

surface at every point on the surface, Therefore, 

 

 

The same number of field lines pass through any sphere centered at the origin 

(regardless of its size and shape) would be the same number of field lines.  

 
Therefore, the flux through any closed surface enclosing the charge is q/ϵo . 

 

The net electric flux through a closed surface that surrounds no charge is zero 

 

If we have a group of scattered charges, according to the principle of superposition, 

the total field is the (vector) sum of all the individual fields 

 

The flux through a surface that encloses them all is 

 

 

For any closed surface 
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Qenc is the total charge enclosed within the surface and this is Gauss’s law as an 

integral equation  

Gauss’s law relates the flux of E through a closed surface to the total charge 

enclosed within the surface. 

 

------------------------------------------------------------------------------------------------ 

By applying the divergence theorem  

 

And 

 

Gauss’s law becomes 

 

Gauss’s law in differential form becomes 

 

------------------------------------------------------------------------------------------------- 
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2.5 Applications of Gauss’s Law 

In the following examples we should always take advantage of the symmetry of the 

charge distribution so that we can remove E from the integral and solve it with the 

help of:  

 

• The value of the electric field can be claimed to be constant over the surface 

by symmetry. 

• The dot product in Gauss’s law can be expressed as E da because E and da 

are parallel. 

• The dot product in Gauss’s law is zero if E and da are perpendicular. 

 

 

Example 2.7 

 

Find the field outside a uniformly charged solid sphere of radius R and total charge 

q. 

 

Solution: 

 

 

If Gaussian surface is a spherical surface at radius  r  where r > R  and Qenc = q then 
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Example 2.8 

 

Find the electric field a distance r from a line of positive charge of infinite length 

and constant charge per unit length λ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Example 2.9 

 

A long cylinder carries a charge density that is proportional to the distance from 

the axis: ρ = ks, for some constant k. Find the electric field inside this cylinder. 
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Example 2.10  

 

An infinite plane carries a uniform surface charge σ. Find its electric field. 

 

 

 

 

 

Example 2.11  

 

Two infinite parallel planes carry equal, but opposite uniform charge densities ±

σ. Find the field in each of the three regions: 

(i) to the left of both,  

(ii) between them,  

(iii) (iii) to the right of both. 

 

 

 

 

 

 



17 
 

Example 2.12 

 

Suppose the electric field in some region is found to be E = kr3 ȓ, in spherical 

coordinates (k is constant). Find the total charge contained in a sphere of radius R 

centered at the origin. 

 

 

 

 

 

Example 2.13 

A charge q sits at the back corner of a cube, as shown in following figure. 

What is the flux of E through the shaded side with area a ? 

 

 

Solution: 

This cube can be one of 8 cubes surrounding the charge q (which sits in the center 

of the 8 cubes shape) and their total area A 
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2.6 Electric Potential 

If the curl of a vector field (such as E) vanishes (everywhere), then E can be 

written as the gradient of a scalar potential (V): 

 

∇ × E = 0  ⇔  E = −∇V 

Consider a test point charge qo that can be moved in an electric field. The work 

done within the charge–field system by the electric field on this test charge to 

move it from a point “a” to a point “b” along a given path is: 

  

dlEqdlFdW o ==  

As the relation between the work done within the system by a conservative force 

and the change in its potential energy ΔU is: 

W = - ΔU 

dlEqdU o −=  

 −=
b

a
o dlEqU

 

The electric potential difference (or simply the potential difference) between two 

points “a” and “b” is given by: 

 −=


=
b

a
o

dlE
q

U
V

 

The potential difference between two points is a measure of potential energy 

difference per unit charge.  

 

In general,  

 

Here O is a reference point  
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The potential difference between two points “a” and “b” is 

 
 

Now, the fundamental theorem for gradients states that 

 

 

 
This is the same conclusion we have when we discuss the curl of E  

 

The SI unit of both electric potential and potential difference (which are scalar 

quantities) is joules per coulomb, which is defined as a volt (V): 

 

1 V = 1 J/C 

This means the unit of the electric field can be 1 N/C or  1 V/m 

A unit of energy commonly used is the electron volt (eV), which is defined as the 

energy a charge–field system gains or loses when a charge of magnitude e (that is, 

an electron or a proton) is moved through a potential difference of 1 V. 

 

1 eV = 1.60 × 10-19 C ‧ V = 1.60 × 10-19 J 
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2.7 Electric Potential and Potential Energy Due to Point Charges 

 

An isolated positive point charge q produces an electric field directed radially 

outward from the charge and the electric potential difference can be calculated 

from the equation mentioned in the previous section (The Curl of E):  

 

Therefore, for a single charge (q) the electric potential due to this point charge at 

any distance r from the charge is:  

 
 

Also we can get the same result using: 

 
When dl= dr    and O = infinity  

• The potential can be taken to be zero at infinity (as a reference point)  

• An equipotential surface is a surface over which the potential is constant (all 

points are at the same electric potential). Equipotential surfaces are 

perpendicular to electric field lines. For example, the surface of any charged 

conductor is equipotential surface. 

 

 

For a group of point charges, we can write the total electric potential at P as 
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and ri is the distance from the point P to the charge qi. 

 

Example 2.14 

As shown in the following figure, if q1 = 12x10-9  C and q2 = -12x10-9 C 

 

Find:  

a)  The total electric potential due to these two charges at points a, b and c  

b) Find the change in potential energy of the system of these two charges and a 

third charge 4x10-9 C as the latter charge moves from infinity to points a, b 

and c  

c) The potential difference Vab ,Vba  and  Vbc 
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Example 2.15 

Three charges are situated at the corners of a square (side a), as shown in the 

following figure.  

(a) How much work (done by external force) does it take to bring in another 

charge, +q, from far away and place it in the fourth corner? 

(b) How much work does it take to assemble the whole configuration of four 

charges? 
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2.8 Electric Potential Due to Continuous Charge Distributions 

 

The electric potential due to continuous charge distributions can be calculated by: 

 

 

Example 2.16 

(a) Find an expression for the electric potential at a point P located on the 

perpendicular central axis of a uniformly charged ring of radius r and total 

charge q.  

(b)  Find an expression for the magnitude of the electric field at point P. 
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Example 2.17  

A uniformly charged disk has radius R and surface charge density σ. 

(a) Find the electric potential at a point P along the perpendicular central axis of 

the disk. 

(b) Find the y component of the electric field at a point P along the perpendicular 

central axis of the disk. 
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Example 2.18 

 

Find the potential inside and outside a spherical shell of radius R that carries a 

uniform surface charge. Set the reference point at infinity. 
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Example 2.19 

 

Two spherical conductors of radii r1 and r2 are separated by a distance much 

greater than the radius of either sphere. The spheres are connected by a conducting 

wire as shown in the following figure. The charges on the spheres in equilibrium 

are q1 and q2, respectively, and they are uniformly charged.  

 

Find the ratio of the magnitudes of the electric fields at the surfaces of the spheres. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

The electric field is very large at sharp points 

 

 



28 
 

Example 2.20 

 

A small conducting sphere of radius r1 and charge q1 is surrounded by a spherical 

conducting shell of radius r2 and charge q2. Find the potential difference between 

them.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

q1 will necessarily flow from the sphere to the shell 
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Example 2.21 

 

This figure represents a graph of the electric potential in a region of space versus 

position x, where the electric field is parallel to the x axis. 

 

Draw a graph of the x component of the electric field versus x in this region. 
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Example 2.22 

Over a certain region of space, the electric potential is V= 5x -3x2y +2yz2.  

(a) Find the expressions for the x, y, and z components of the electric field over this 

region.  

(b) What is the magnitude of the field at the point P that has coordinates (1, 0, -2) 

m? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


