Chapter 2: Electrostatics

If we have some electric charges, g1, gz, 03, . . . (called source charges), exerting
electric forces on another charge, Q (called test charge), the interaction between
any two charges is completely unaffected by the presence of others. This means
that to determine the total electric force on Q, we can first calculate the force Fy,
due to g; alone (ignoring all the others); then we calculate the force F,, due to g
alone; and so on. Finally, we take the vector sum of all these individual forces: F =
Fi1+F,+ F3+ ... (the principle of superposition)

. 0

L] s
£ “Test™ charge

“Source” charges

2.1 Coulomb’s Law

The force between two stationary electric point charges q and Q is found
experimentally to be:
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The constant &, is called the permittivity of free space.
In SI units, where force is in newtons (N), distance in meters (m), and charge in
coulombs (C),

e=885x107"—

The Coulomb constant ke in SI units has the value k. = 8.9876 x10° N - m?%/C?

Where




The charge on an electron (- e) or a proton (+ €), has a magnitude:

e=1.60218 X 1071 C

The electric force:
e acts along the line joining the two charges
e is proportional to the product of the charges and inversely proportional to
the square of the separation distance

Example 2.1

The electron and proton of a hydrogen atom are separated by a distance of
approximately 5.3x10** m. Find the ratio of the magnitude of the electric force to
the magnitude of the gravitational force between the two particles.

Particle Charge (C) Mass (kg)
Electron (e) —-1.602 176 5 x 10719 9.109 4 x 103!
Proton (p) +1.602 176 5 X 10719 1.672 62 X 10-27
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Example 2.2

Consider three point charges located at the corners of a right triangle as shown in
the following figure, where g1 = g3 =5 uC, g2 = -2 uC, and a = 0.1 m. Find the
resultant force exerted on qs . g
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Example 2.3

Twelve equal charges, g, are situated at the corners of a regular 12-sided polygon.

(a) What is the net force on a test charge Q at the center?
(b) Suppose one of the 12 g’s is removed (the one at “6 o’clock™). What is the

force on Q?
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2.2 The Electric Field

If we have several point charges qi, 0z, . . ., Qn, at distances ry, 1, . . ., ry from
Q, the total force on Q is:
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We can write the total force as:

F = QE,

Where
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E(r) =

E(r) is called the electric field of the source charges. Notice that:

e Itis a function of position (r), because the separation vectors r; depend on
the location of the field point P

e |t is a vector quantity that varies from point to point and is determined by the
configuration of source charges.

o The electric field makes no reference to the test charge Q, but it is the force
per unit charge that would be exerted on a test charge, if you were to place
one at the field point P.
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Example 2.4

Find the electric field a distance Y above the midpoint between two equal charges
(q), a distance d apart.
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2.3 Continuous Charge Distributions

If the charge is distributed continuously over some region, the sum becomes an
integral

E(r) =
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e |f the charge is spread out along a line (see the following figure b), with
charge-per-unit-length A1, thendq= A dlI” (where dl" is an element of

length along the line);
e |f the charge is spread out over a surface (figure c), with charge per unit area
o,thendg= o da” (where da’ is an element of area on the surface).

e |f the charge fills a volume (figure d), with charge per unit volume o, then
dg= p dt "~ (whered ¢ " is an element of volume).

dgq
dl’
(a) Continuous (b) Line charge, A
distribution
2_«*P
da’ 2 w
(IT'A‘
(c) Surface charge, 6 (d) Volume charge. p

The electric field of a line charge is

1 A(r)
E(r) = gdl’
(r) 4 e [ 22 ‘

for a surface charge



E(r) = — /U(”wa'
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and for a volume charge,

| p(r) ,
E(r)_4ne0/ o £dt

Example 2.5

Find the electric field a distance Y above the midpoint of a straight line segment of

length L that carries a uniform line charge A
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Example 2.6

Find the electric field a distance Y above the center of a circular loop of radius a

that carries a uniform line charge 4. g
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Example 2.7

Find the electric field a distance Y above the center of a flat circular disk of radius
R that carries a uniform surface charge o . What does your formula give in the

limit R—oo ?
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2.4 Field Lines

From the previous discussion the electric field for a single point charge q can be
calculated from the following formula:

1 q.
E(l’) = 43’[60 ﬁl‘

Representative vectors can be sketched, as shown in the following figure. The
vectors point radially outward and the field falls off like 1/r 2 (the vectors become
shorter when go farther away from the origin)

But it is nicer to connect up the arrows to represent field lines:

e The strength of the field, which was previously contained in the length of the
vector line, can be indicated here by the density of the field lines. It is strong
near the center where the field lines are close together and weak farther out
where they are relatively far apart. Therefore, the magnitude of the field is
indicated by the density of the field lines.

e The direction of the electric field vector E is tangent to the electric field line
at each point.

o Field lines begin on positive charges and end on negative charges.

e Field lines cannot simply terminate in midair.

e Field lines can never cross.




For opposite charges
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2.5 Electric Flux and Gauss’s Law

The total number of lines penetrating the surface (of area a) is proportional to the

product E-a
This product of the electric field E and surface area a perpendicular to the field is

called the electric flux ®g




If the electric field is constant over the surface area then the electric flux becomes
Oc=E-a=Eacos0
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If the electric field is not constant over the surface area then the electric flux

becomes:
j/(f’/i
:

O ~ lim > E -Aa

Aa—0

D, = IE-da

surface

The unite of electric flux in SI system is Nm?/C

Let us consider a positive point charge g located at the center of a closed surface
which is here a sphere of radius r and we call this surface (Gaussian surface)
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The magnitude of the electric field everywhere on the surface of the sphere is
constant and the field lines are directed radially outward and perpendicular to the
surface at every point on the surface, Therefore,

] i b n |
%E -da = / e ('—2r) -(r°sinfdfd¢r) = ;q

The same number of field lines pass through any sphere centered at the origin
(regardless of its size and shape) would be the same number of field lines.
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Therefore, the flux through any closed surface enclosing the charge is g/e, .

The net electric flux through a closed surface that surrounds no charge is zero

If we have a group of scattered charges, according to the principle of superposition,
the total field is the (vector) sum of all the individual fields

n
E=) E.
i=l

The flux through a surface that encloses them all is

n

fE.da=Z(fE,--da)=i(éfh)

i=1

For any closed surface

1
%E'da = — Qenc,
€0
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Qenc IS the total charge enclosed within the surface and this is Gauss’s law as an
integral equation

Gauss’s law relates the flux of E through a closed surface to the total charge
enclosed within the surface.

By applying the divergence theorem

fE-da:/(V-E)dr.
v

S

And

Qenc = pdr

T ——

Gauss’s law becomes

[(V-E)dt =/(p) dt
€0
v

1%

Gauss’s law in differential form becomes
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2.5 Applications of Gauss’s Law

In the following examples we should always take advantage of the symmetry of the
charge distribution so that we can remove E from the integral and solve it with the
help of:

e The value of the electric field can be claimed to be constant over the surface
by symmetry.

e The dot product in Gauss’s law can be expressed as E da because E and da
are parallel.

e The dot product in Gauss’s law is zero if E and da are perpendicular.

Example 2.7

Find the field outside a uniformly charged solid sphere of radius R and total charge
g.

Solution:

Gaussian
surface

If Gaussian surface is a spherical surface at radius r where r >R and Qenc = q then
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Example 2.8

Find the electric field a distance r from a line of positive charge of infinite length
and constant charge per unit length A

Example 2.9

A long cylinder carries a charge density that is proportional to the distance from
the axis: p = ks, for some constant k. Find the electric field inside this cylinder.

> LA/;
’_\, Gaussian
C ‘ lE surface QQWC.:' gPJ’\[
S M Q %
2
5O = gws Js bz
énc
o © 8

= 2Ky [ézs

o

3
j ®¢“lz Z’-Trkps \_/?

5 15



Example 2.10

An infinite plane carries a uniform surface charge o . Find its electric field.

Example 2.11

Two infinite parallel planes carry equal, but opposite uniform charge densities =
o . Find the field in each of the three regions:
(i)  tothe left of both,

(i)  between them,
(iii) (i) to the right of both.

(i) (ii) (iii)
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Example 2.12
Suppose the electric field in some region is found to be E = kr® #, in spherical

coordinates (k is constant). Find the total charge contained in a sphere of radius R
centered at the origin.
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Example 2.13

A charge q sits at the back corner of a cube, as shown in following figure.
What is the flux of E through the shaded side with area a ?

Solution:

This cube can be one of 8 cubes surrounding the charge g (which sits in the center
of the 8 cubes shape) and their total area A
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2.6 Electric Potential

If the curl of a vector field (such as E) vanishes (everywhere), then E can be
written as the gradient of a scalar potential (V):

VXE =0 & E=-VV

Consider a test point charge g, that can be moved in an electric field. The work
done within the charge—field system by the electric field on this test charge to
move it from a point “a” to a point “b” along a given path is:

dW =F -dl =q,E -dl

As the relation between the work done within the system by a conservative force
and the change in its potential energy AU is:

W=-4U
dU =—q,E-dl
AU =g [ E-dl

The electric potential difference (or simply the potential difference) between two
points “a” and “b” is given by:

AV:éE:—fEdl

' ?

The potential difference between two points is a measure of potential energy
difference per unit charge.

In general,

r
Vir) = —f E -dl
(@)

Here O is a reference point
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The potential difference between two points “a” and “b” is
b

V(b) — V(a) = —/
o

b (@) b
=—/ E-cll—/ E-dl=—f E - dl
(@} a a

Now, the fundamental theorem for gradients states that

a
E-dl+/ E - dl
(@)

b
V(b) — V(a) = f (VV) . dl,
a

b b
[(VV)-(II:—[ E -dl

E=-VV.

This is the same conclusion we have when we discuss the curl of E

The SI unit of both electric potential and potential difference (which are scalar
quantities) is joules per coulomb, which is defined as a volt (V):

1v=1JC
This means the unit of the electric field can be 1 N/C or 1 V/m

A unit of energy commonly used is the electron volt (eV), which is defined as the
energy a charge—field system gains or loses when a charge of magnitude e (that is,
an electron or a proton) is moved through a potential difference of 1 V.

1eV=160x10"C-V=1.60x10"°)]
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2.7 Electric Potential and Potential Energy Due to Point Charges

An isolated positive point charge q produces an electric field directed radially
outward from the charge and the electric potential difference can be calculated
from the equation mentioned in the previous section (The Curl of E):

b b rp
1 —1 1
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Therefore, for a single charge (q) the electric potential due to this point charge at
any distance r from the charge is:

q

V =
(r) dmweg 2

Also we can get the same result using:

r
Vir) = —[ E . dl
o

When dl=dr and O = infinity

e The potential can be taken to be zero at infinity (as a reference point)

e An equipotential surface is a surface over which the potential is constant (all
points are at the same electric potential). Equipotential surfaces are
perpendicular to electric field lines. For example, the surface of any charged
conductor is equipotential surface.

For a group of point charges, we can write the total electric potential at P as
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and s; is the distance from the point P to the charge q;.

Example 2.14
As shown in the following figure, if q; = 12x10° C and g, =-12x10° C

L»

Find:

a) The total electric potential due to these two charges at points a, b and ¢

b) Find the change in potential energy of the system of these two charges and a
third charge 4x10° C as the latter charge moves from infinity to points a, b

and c
¢) The potential difference Vap ,Vpa and Vi
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Example 2.15

Three charges are situated at the corners of a square (side a), as shown in the
following figure.
(@) How much work (done by external force) does it take to bring in another
charge, +q, from far away and place it in the fourth corner?
(b)How much work does it take to assemble the whole configuration of four
charges?
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2.8 Electric Potential Due to Continuous Charge Distributions

The electric potential due to continuous charge distributions can be calculated by:

1 1
V(r)= —d
) 4:."!’60[ 2 91

Example 2.16

(@) Find an expression for the electric potential at a point P located on the

perpendicular central axis of a uniformly charged ring of radius r and total
charge g.

(b) Find an expression for the magnitude of the electric field at point P.
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Example 2.17

A uniformly charged disk has radius R and surface charge density o.
(@) Find the electric potential at a point P along the perpendicular central axis of

the disk.

(b) Find the y component of the electric field at a point P along the perpendicular

central axis of the disk.
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Example 2.18

Find the potential inside and outside a spherical shell of radius R that carries a
uniform surface charge. Set the reference point at infinity.
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Example 2.19

Two spherical conductors of radii r; and r, are separated by a distance much
greater than the radius of either sphere. The spheres are connected by a conducting
wire as shown in the following figure. The charges on the spheres in equilibrium
are q; and gy, respectively, and they are uniformly charged.

Find the ratio of the magnitudes of the electric fields at the surfaces of the spheres.

*)(\va\’\ Fﬂ/@ ,:/I/” 2 V‘:L é 1 V_Z,/

- v
Ez, - ! | EZ

(l
>

The electric field is very large at sharp points



Example 2.20

A small conducting sphere of radius r; and charge q; is surrounded by a spherical
conducting shell of radius r, and charge q.. Find the potential difference between

them.
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g1 will necessarily flow from the sphere to the shell

28



Example 2.21

This figure represents a graph of the electric potential in a region of space versus
position x, where the electric field is parallel to the x axis.

Draw a graph of the x component of the electric field versus X in this region.
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Example 2.22

Over a certain region of space, the electric potential is V= 5x -3x%y +2yz2,

(a) Find the expressions for the x, y, and z components of the electric field over this
region.

(b) What is the magnitude of the field at the point P that has coordinates (1, 0, -2)
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