alternate solution of Example 2 : The quantity $\boldsymbol{\varepsilon}$ is assigned to cell $(2,4)$, which has the minimum transportation cost $=\mathbf{0}$.

Example2: (degenerate) A company has factories at S1, S2 and S3 which supply to warehouses at D1, D2, D3 and D4. Weekly factory capacities are 18, 3 and 30 units, respectively. Weekly warehouse requirement are $21,15,9$ and 6 units, respectively. Unit shipping costs (in Dollar) are as follows:

| Destination
 Sources | D_{1} | D_{2} | $\mathrm{D}_{\mathbf{3}}$ | D_{4} | Supply |
| :--- | ---: | :--- | :--- | :--- | :---: | :---: |
| S_{1} | | | | | |
| $\mathrm{~S}_{2}$ | 8 | 21 | 44 | 28 | 18 |
| $\mathrm{~S}_{3}$ | 4 | 0 | 24 | 4 | 3 |
| Demand | 20 | 32 | 60 | 36 | 30 |

Answer:

Initial feasible solution (IBFS) is:

$$
X_{11}=18, X_{21}=3, X_{32}=15, X_{33}=9, X_{34}=6
$$

The minimum total transportation cost:
$T T C=Z=8 * 18+4 * 3+32 * 15+60 * 6=1392 \$$
Here, the number of allocated cells $=5$, which is less than to $\mathbf{m}+\mathbf{n - 1}=\mathbf{3 + 4 - 1}=\mathbf{6}$
Therefore, this solution is degenerate.

The quantity \mathbf{d} is assigned to that unoccupied cell, which has the minimum transportation cost.
The quantity d is assigned to cell $(2,4)$, which has the minimum transportation cost $=4$.

Optimality test using MODI method... $\boldsymbol{\delta}_{k j}=v_{j}+u_{i}-\boldsymbol{C}_{\boldsymbol{k j}}$,

	Iteration-1	$\mathrm{V}_{1}=36$	$\mathrm{V}_{2}=32$	$\mathrm{V}_{3}=60$	$\mathrm{V}_{4}=36$	
	Destination Sources	D_{1}	D_{2}	D_{3}	D_{4}	Supply
$\mathrm{U}_{1}=-28$	S_{1}	$\begin{array}{r} 8 \\ 18 \end{array}$	$\begin{array}{r} 21 \\ \delta=-17 \end{array}$	$\begin{array}{r} 44 \\ \delta=-12 \end{array}$	$\begin{array}{r} 28 \\ \delta=-20 \end{array}$	18
$\mathrm{U}_{2}=-32$	$\mathrm{S}_{\mathbf{2}}$	$\begin{array}{r} -4 \\ \hline \end{array}$	\% 0	24 $\delta=4$	$\rightarrow \begin{gathered} +4 \\ d=0 \end{gathered}$	3
$\mathrm{U}_{3}=0$	S_{3}	$\begin{aligned} & +\quad \mathbf{2 0} \\ & \hline \delta=16 \end{aligned}$	32 15	60 9	- $\begin{array}{r}-36 \\ 6\end{array}$	30
	Demand	21	15	9	6	$\begin{gathered} 51 \\ 51 \\ \hline \end{gathered}$

To Find u_{i} and v_{j} for all occupied cells (i, j), where $v_{j}+u_{i}=C_{i j}$

- Substituting, $u_{3}=0$, we get
- $c_{32}=u_{3}+v_{2} \Rightarrow v_{2}=c_{32}-u_{3} \Rightarrow v_{2}=32-0=32$
- $c_{33}=u_{3}+v_{3} \Rightarrow v_{3}=c_{33}-u_{3} \Rightarrow v_{3}=60-0 \Rightarrow v_{3}=60$
- $c_{34}=u_{3}+v_{4} \Rightarrow v_{4}=c_{34}-u_{3} \Rightarrow v_{4}=36-0=36$
- $c_{24}=u_{2}+v_{4} \Rightarrow u_{2}=c_{24}-v_{4} \Rightarrow u_{2}=4-36=-32$
- $c_{21}=u_{2}+v_{1} \Rightarrow v_{1}=c_{21}-u_{2} \Rightarrow v_{1}=4-(-32)=36$
- $c_{11}=u_{1}+v_{1} \Rightarrow u_{1}=c_{11}-v_{1} \Rightarrow u_{1}=8-36=-28$

We note that not all $\boldsymbol{\delta}_{\mathrm{kj}} \leq 0$, so we don't reach to optimal solution yet.

	Iteration-2	$\mathrm{V}_{1}=20$	$\mathrm{V}_{2}=32$	$\mathrm{V}_{3}=60$	$\mathrm{V}_{4}=36$	
	Destination Sources	D_{1}	D_{2}	D_{3}	D_{4}	Supply
$\mathrm{U}_{1}=-12$	S_{1}	$\begin{array}{r} -8 \\ -18 \end{array}$	21	$\rightarrow \begin{array}{r}+44 \\ 8=4\end{array}$	$\begin{array}{r} \mathbf{2 8} \\ \delta=-4 \end{array}$	18
$\mathrm{U}_{2}=-32$	$\mathbf{S}_{\mathbf{2}}$		0 $\delta=0$	24 $\delta=4$	4 3	3
$\mathrm{U}_{3}=0$	S3	$+\quad 20$ $+\quad 3$	32 15	- \downarrow - 60	36 3	30

	Demand	21	15	9	6	51

We note that not all $\boldsymbol{\delta}_{\mathrm{kj}} \leq 0$, so we don't reach to optimal solution yet.

	Iteration-3	$\mathrm{V}_{1}=20$	$\mathrm{V}_{2}=32$	$\mathrm{V}_{3}=56$	$\mathrm{V}_{4}=36$	
	Destination Sources	D_{1}	D_{2}	D_{3}	D_{4}	Supply
$\mathrm{U}_{1}=-12$	S_{1}	8	$\begin{array}{r} 21 \\ \delta=-1 \end{array}$	44 9	$\begin{array}{r} \mathbf{2 8} \\ \delta=-4 \end{array}$	18
$\mathrm{U}_{2}=-32$	S_{2}	$\begin{array}{r} \mathbf{4} \\ \delta=-16 \end{array}$	0 $\delta=0$	24 $\delta=0$	4 3	3
$\mathrm{U}_{3}=0$	S_{3}	20 12	32 15	$\begin{array}{r} 60 \\ \delta=-4 \end{array}$	36 3	30
	Demand	21	15	9	6	$\begin{array}{r} 51 \\ 51 \end{array}$

We note that all $\boldsymbol{\delta}_{\mathbf{k j}} \leq 0$, so final optimal solution is arrived
The minimum total transportation cost:

$$
T T C=Z=8(9)=44(9)+4(3)+20(12)+32(15)+36(3)=1308 \$
$$

Note: alternate solution is available with unoccupied cell $(2,2)$, but with the same optimal value.

