KING SAUD UNIVERSITY

Math Department

November 2022

Time: 180mn

Final exam Math106

<u>Question</u> 1(3+3+3)

a) Use the substitution $u = x^2 + 4$ to compute $\int x^3 \sqrt{x^2 + 4} \, dx$.

b) Find the number(s) *c* that satisfies the conclusion of the mean value theorem for the function $f(x) = -x^2 + 4x$ on [0, 3].

c) Evaluate the integral
$$\int rac{1}{\sqrt{e^{4x}-16}} dx$$

Question 2(2+3+3)

a) Evaluate the integral
$$\int rac{sinhx}{\sqrt{9+(coshx)^2}} dx$$

b) Find the indefinite integral
$$\int \frac{\ln x}{x^5} dx$$

c) Compute $\int (secx)^6 dx$

Question 3(3+3+2)

a) Find
$$\lim_{x\to 0} (1+8x^2)^{\frac{1}{x^2}}$$

b) Evaluate the integral $\int \frac{8x+32}{(x-2)(x^2-4)} dx$

c) Compute $\int \frac{1}{\sqrt{x^2 - 4x + 2}} dx$

Question 4(3+3+3)

- a) Sketch the region bounded by $y = \sqrt{x+2}$, y = -x, and the x-axis and find its area.
- b) Find the volume of the solid obtained by revolving the region bounded by

 $y = (x - 1)^2$ and y = 3 - x about the x-axis.

c) Compute the area of the surface obtained by revolving the curve $y = \sqrt{9 - x^2}$ $-2 \le x \le 2$ about the x.axis.

Question5(3+3)

a) Find the arc length of the parametric curve $x = \frac{t^4}{4}$, $y = \frac{t^6}{6}$, $0 \le t \le 1$

b) Sketch the region inside r = 2 and outside $r = 4 - 4\cos\theta$ and find its area.