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Abstract: This study examined the effect of fermented goat milk (oggtt) against non-alcoholic fatty
liver disease (NAFLD) in rats induced by chronic high-fat diet (HFD) treatments. Both control-fed and
HFD-fed adult male rats received the same vehicle or treatment with two doses of freshly collected
oggtt (2 mL or 5 mL) for 12 weeks (n = 8/group). The treatment of the control and HFD-fed rats with
oggtt in both doses significantly reduced weight gain, but fasting serum glucose and insulin levels as
well as HOMA-IR levels were lowered only in the HFD-fed rats. Treatment improved HFD-induced
glucose and insulin homeostasis impairment as measured by the oral glucose tolerance test. Both
doses of oggtt reduced serum levels of liver function markers and C-reactive protein (CRP) as well
as hepatic levels of malondialdehyde (MDA), tumour necrosis factor-α (TNF-α), and in-terlukin-6
(IL-6) in HFD-fed rats. In addition, the oggtt doses reduced serum and hepatic levels of triglycerides
(TGs) and cholesterol (CHOL) as well as serum levels of low-density lipoproteins (LDL) in these rats.
These biochemical endpoints were reflected by the improvement in liver histology and reduction
in the number of fatty vacuolated and pyknotic cells. In both the control and HFD-fed rats, oggtt at
both doses stimulated levels of superoxide dismutase (SOD) and glutathione (GSH). All these effects
were more profound with the highest dose of oggtt. In conclusion, the finding of this study strongly
supports the use of oggtt as a functional food to treat NAFLD, as it has shown hypoglycaemic and
antioxidant properties.

Keywords: NAFLD; fermented goat milk; obesity; hypoglycaemic; antioxidant

1. Introduction

Obesity, defined as an increase in body mass index (BMI), is a major health prob-
lem that results from increased calorie intake and reduced energy expenditure [1]. The
prevalence of obesity is rapidly increasing worldwide across both genders and all ages [2].
Current records show that 24.7% of the Saudi Arabian population is obese, which is ex-
pected to increase over the next decades [3].

Yet, obesity is an independent risk factor for developing type-2 diabetes mellitus
(T2DM) and metabolic syndrome [4]. In addition, obesity is a major contributor to the
onset of non-alcoholic fatty liver disease (NAFLD), which impairs hepatic glucose and lipid
metabolism and increases peripheral adipose tissue lipogenesis through the induction of
T2DM and IR [4,5]. Uncontrolled de novo lipogenesis (DNL) and increased intrahepatic
lipid accumulation are two features of NAFLD that can lead to steatosis, which can progress
to non-alcoholic steatohepatitis fibrosis and liver failure [6].

The mechanism behind the development and progression of NAFLD is still compli-
cated and involves numerous pathways. Increased lipid intake is the intimal trigger that
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accumulates lipids in the liver [6]. However, hepatic oxidative stress and inflammation
is the second event that leads to a progression of the disease to NASH [6,7]. However,
hyperglycaemia, increased influx of free fatty acids (FFAs) and inflammatory cytokines
from the insulin-unresponsive adipose tissue, simultaneous activation of hepatic Kupfer
cells, increased production of reactive oxygen species (ROS) due to impaired mitochondrial
oxidative phosphorylation, FAs (β)-oxidation, endoplasmic reticulum (ER) stress, and
scavenging of antioxidants are the best-known mechanisms responsible for the triggering
of NAFLD [4–7].

Goat’s milk (GM) is one of the most consumed dairy products in the general popula-
tion of developing countries and is considered a major source of dietary fats, calories, and
proteins [8]. Several health benefits have been reported for GM due to its easy digestion
and high content of short/medium fatty acids (e.g., omega-3 polyunsaturated fatty acids
(n = 3 PUFA), oleic acid, stearic acid, etc.), minerals (Zn, Fe2+, Mg2+, and Ca2+), and oligosac-
charides [9–11]. In addition, the antidiabetic activity of GM has been demonstrated in
experimental studies. Indeed, daily consumption of GM reduced body weight and attenu-
ated dyslipidaemia, hepatic IR, and steatosis in diabetic mice by regulating glucose/insulin
haemostasis and improving liver antioxidant and anti-inflammatory mechanisms [12,13].
In the same line, GM prevented liver damage in non-diabetic animals that were exposed to
the hepatotoxic drug [14,15].

Fermented animal milk from camels and cows can be considered a functional anti-
oxidant and anti-inflammatory food that can attenuate metabolic disturbance as com-pared
to crude milk [16]. Recently, it has been shown that fermented milk (laban) has several
significant health-promoting properties and higher antioxidant activity than raw milk [17].
Indeed, the administration of fermented camel and soy products can reduce circulatory
liver enzymes in patients with metabolic syndrome and attenuate IR and NAFLD in diabetic
animal models by ameliorating hepatic oxidative stress and inflammation [18,19]. Along
the same line, fermented soy milk was discovered to reduce obesity, improve peripheral
insulin sensitivity, and prevent hepatic and renal damage in the T2DM animal model by
attenuating tissue oxidative stress and inflammation [20]. Furthermore, kefir, an acidic and
slightly alcoholic fermented milk from cows, prevented hepatic steatosis and renal injury in
leptin-deficient ob/ob mice and diabetic rats by suppressing oxidative stress [21,22]. Water
kefir has been explored as a promising source of natural antioxidants with high potency in
health development due to its powerful ability to inhibit ascorbate and scavenge DPPH
free radicals [23].

In Saudi Arabia and other Arabian Gulf countries, fermented goat milk (FGM), known
as oggtt (gamid or madheer), is largely consumed by native desert dwellers and the general
population [8,24]. Despite this, few studies on the health benefits of oggtt, particularly on
chronic disorders, have been conducted.

In rodents, chronic consumption of a high-fat diet (HFD) is the best-described strat-
egy to induce T2DM and NAFLD and to study the protective effect of various dietary
interventions on obesity-associated organ damage [25]. Therefore, this study aimed to
assess the protective effect of oggtt on HFD-induced NAFLD by focusing on its effect
on glucose, insulin, and lipid homeostasis as well as on liver markers of oxidative stress
and inflammation.

2. Materials and Methods
2.1. Animals

Adult male Wister albino rats (9 weeks/150 g) were supplied by the Experimental
Animal Care Centre at King Saud University, Riyadh, Saudi Arabia. All animals were
housed in a controlled environment (22 ± 2 ◦C and 55 ± 5% relative humidity) with free
access to food and water. All procedures conducted in this experiment were approved by
the Research Ethics Committee (Ethics Reference No: KSU-SE-22-22), King Saud University,
Riyadh, Saudi Arabia.
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2.2. Diets and Drugs

Fermented goat milk (oggtt), which contains 37.39% protein, 26.40% fat, 28.22% car-
bohydrates, and 7.40% ash and has a total energy of 500.05 Kcal/100 g, estimated on a
dry matter basis, was purchased from a local market in Hail, Saudi Arabia. Oggtt was
stored at 4 ◦C for use in the experiments. The control diet and HFD were purchased
commercially from Research Diets, NJ, USA (# D12450B & # D12492, respectively). The
control diet contained 70%, 20%, and 10% carbohydrates, proteins, and fats, respectively,
with a total energy of 4057 Kcal/kg. On the other hand, the HFD contained 35%, 20%, and
40% carbohydrates, proteins, and fats, providing 20%, 20%, and 60% Kcal, respectively, and
a total energy of 4057 Kcal/kg. More information about the precise composition of both
diets is available on the supplier’s website.

2.3. Experimental Design

Forty-eight rats were adapted for 1 week and then divided into the following groups
randomly (n = 8 rats/each): (1) control group: fed the control diet daily administered 5 mL
normal of normal saline; (2) control + oggtt (2 mL)-treated groups: fed the control diet and
administered 2 mL of oggtt; (3) control + oggtt (5 mL)-treated group: fed the control diet
and administered 5 mL oggtt; (4) HFD model group: fed the HFD and administered 5 mL
of normal saline; (5) HFD + oggtt (2 mL)-treated groups: fed the HFD and administered
2 mL of oggtt; and (6) HFD + oggtt (5 mL)-treated group: fed the HFD and administered
5 mL oggtt. All treatments were given orally and daily for 12 weeks. The protocol and the
doses of fermented oggtt were adopted from our previous studies [26].

2.4. Collection and Biochemical Analyses of Urine

On the last day of the experiment, all rats were placed in their metabolic cages, and
their 24 h urine was collected. All urine samples were centrifuged at 1200× g and stored
at −20 for the subsequent tests. Urinary levels of urea, creatinine (Cr), and albumin were
measured using rat’s special assay kits (# 80340, Crystal Chem, Zaandam, The Netherlands;
# Ab56340, Abcam, MA; and # Ab108789 Abcam, MA, USA) following the manufacturer’s
instructions and reading the aberrance using an ELISA plate reader (SoftMax Pro 5; Molec-
ular Devices, San Jose, CA, USA).

2.5. Oral Glucose Tolerance Test (OGTT) and Intraperitoneal Insulin Tolerance Test (IPITT)

The next day, rats fasted overnight, and an oral glucose tolerance test (OGTT) was con-
ducted as described by others [27]. In brief, each rat of any group was orally administered
the glucose solution (2 g/kg), and blood samples were withdrawn in EDTA-contained Ep-
pendorf tubes (250 µL) at different time intervals during the first 2 h post glucose treatment.
Samples were centrifuged at 1500× g for 15 min, and then, plasma was collected to measure
glucose and insulin levels using their commercial kits (# Cat No. 10,009,582 Cayman Chem-
ical, MI, USA and # 589501, Ann Arbor, MI, USA, respectively). To determine the state of
peripheral insulin resistance for each rat, the homeostasis model assessment of insulin resis-
tance index (HOMA-IR) was calculated using the following formula: (HOMA-IR) = ({FPG
(mg/dL) × fasting insulin (µU/mL)}/405) [28].

2.6. Preparation and Biochemical Analyses of the Blood Serum

The rats were fasted overnight again and anesthetized using a ketamine/xylazine
mixture (80:10 mg/kg). Once anaesthesia was confirmed, a blood sample (1 mL) was
withdrawn directly by cardiac puncture from each rat and centrifuged at 1500× g (10 min)
to isolate supernatants. All samples were kept at −20 ◦C and used later to measure the
levels of alanine aminotransferase (ALT) (# MBS269614, MyBioSource, San Diego, CA,
USA), gamma-glutamyl transpeptidase (GGT) (# MBS9343646, MyBioSource, CA, USA), C-
reactive protein (# MBS2508830, MyBioSource, CA, USA), aspartate aminotransferase (AST)
(# CSB-E13023r-1, Cosmo Bio, Carlsbad, CA, USA), total cholesterol (CHOL) (# ECCH-100,
BioAssay Systems, Hayward, CA, USA), total free FAs (# E-BC-F039, Elabscience, Houston,
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TX, USA), total triglycerides (TGs) (# 10010303, Sigma Aldrich, London, UK), low-density
lipoprotein-cholesterol (LDL-C) (# 79960, Crystal Chemicals, Elk Grove Village, IL, USA),
and high-density lipoprotein cholesterol (HDL-C) (# K4436, BioVision, Milpitas, CA, USA).
Serum levels of albumin and Cr were measured using the same kits used for the urine part.
All measurements were performed as described by each kit instruction, and absorbance
was read using the SoftMax Pro 5 plate reader (Molecular Devices, CA, USA).

2.7. Tissue Collection and Processing

The anesthetized rats were killed by cervical dislocation. The livers were collected
on ice, weighed, and then processed as follows: parts of freshly collected livers were
placed in 10% buffered formalin and used later for the histological evaluation. Other parts
of the freshly collected livers were used to isolate lipid fractions following the method
described by Folch et al. [29]. The remaining parts of collected livers were kept at −80 ◦C
and later homogenized in ice-cold phosphate-buffered saline (PBS/pH = 7.4) and used
for the biochemical measurements of markers of inflammation and oxidative stress, as
shown below.

2.8. Biochemical Analyses of the Liver

Levels of CHOL, TGs, and FFAs in the hepatic isolated lipid fractions were deter-
mined using the same kits to measure these lipids in the serum (above). The hepatic
levels of malondialdehyde (lipid peroxides/MDA) were measured using an assay kit
(# 10009055, Cayman, MI, USA). The hepatic levels of total glutathione (GSH) were mea-
sured using a commercial kit (# orb782371, Biorbit, St Louis, MO, USA). Rat-specific ELISA
kits (# MBS036924, MyBioSource, San Diego, CA, USA; # MBS2507393, MyBioSource, San
Diego, CA, USA; and # R6000B, R&D System, Minneapolis, MN, USA) were used to assess
the hepatic levels of superoxide dismutase (SOD), tumour necrosis factor-alpha (TNF-),
and interleukin-6.

2.9. Histopathological Evaluation

Twenty-four hours after collection, livers were dehydrated in xylene and alcohol
of decreasing concentrations, i.e., 100%, 90%, and 70%. The tissue was then placed in
wax and cut with a microtome into slices of 3–5 µM thickness. All tissue slices were
stained with Harris haematoxylin (H)/glacial acetic acid solution, de-stained with 1:400
v/v HCL/ethanol (70%) solution, and then stained with eosin (E). Further, the tissue slices
were then dehydrated with ethanol and xylene. A mounting media was added, and the
tissue slice was covered with a coverslip. The next day, all tissue was examined under a
light microscope and photographed at 200×.

2.10. Statistical Analysis

GraphPad Prism analysis software (Version 8) was utilized for the statistical analysis
of all data. Kolmogorov–Smirnov test was utilized to test the normality. Analysis was
conducted using the one-way ANOVA test. The levels of significance were determined
using Tukey’s test as post hoc (p < 0.05). The results expressed all data as means ± standard
deviation (SD).

3. Results
3.1. Oggtt Lowers Glucose and Insulin Levels and Improves HOMA-IR in HFD-Fed Rats

Plasma glucose, insulin, and HOMA-IR levels were significantly increased in HFD-fed
rats as compared to control rats. In addition, plasma glucose and insulin levels measured over
the 120 min during the OGTT, and their corresponding urea under the curve (UAC) was signif-
icantly increased in HFD-fed rats as compared to control (Figures 1A–C and 2A–D). No signif-
icant variations in the levels of all these markers were seen between the control, control + oggtt
(2 mL), and control + oggtt (5 mL)-treated rats (Figures 1A–C and 2A–D). Blood glucose and
insulin levels were significantly and progressively reduced in HFD + oggtt, which received
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the 2 or 5 mL of oggtt as compared to the HFD-fed rats (Figures 1A–C and 2A–D). The
inhibitory effects of oggtt milk on glucose or insulin levels during fasting or the OGTT
were more significant in HFD + oggtt (5 mL) as compared to HFD + oggtt (2 mL).
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Figure 1. Oggtt milk reduces fasting glucose (A) and insulin levels (B) as well as values of homeostasis
model assessment of insulin resistance index (HOMA-IR) (C) in high-fat diet (HFD)-fed-rats in a
dose-dependent manner. Data were expressed as means ± SD for n = 8 rats/group. a, vs. control; b,
vs. control + oggtt (2 mL); c, vs. control + oggtt (5 mL); d, vs. HFD; and e, vs. HFD + oggt (2 mL).
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Figure 2. Oggtt milk attenuates the impairment in oral glucose tolerance test in the high-fat diet
(HFD)-fed rats in a dose-dependent manner. (A,B) Plasma glucose levels and the corresponding
area under the curve (UAC) as measured at 0.0., 15, 30, 60, and 120 min in all groups of rats post
glucose administration. (C,D) Plasma insulin levels measured at the same time intervals measured
post glucose administration in the same groups of rats. Data were expressed as means ± SD for
n = 8 rats/group. a, vs. control; b, vs. control + oggtt (2 mL); c, vs. control + oggtt (5 mL); d, vs. HFD;
and e, vs. HFD + oggt (2 mL).
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3.2. Oggtt Reduces Body Weights and Has an Anti-Hyperlipidemic Effect in HFd-Fed Rats

Weekly food intake, serum, and hepatic levels of TGs, CHOL, and FFAs as well as
hepatic levels of LDL-c and stool levels of TGs and CHOL were significantly higher in
HFD-fed rats as compared to the control rats (Table 1). The levels of all these markers were
reversed in the groups of rats that received oggtt milk at doses of 2 mL or 5 mL, with a
more significant effect being seen with the highest dose (Table 1). No significant change
in the food intake, hepatic levels of FFAs, and stool levels of TGs and CHOL were seen
between the control and control rats, which received either 2 or 5 mL of oggtt milk (Table 1).
Body weights and serum levels of LDL-c as well as in the serum and hepatic levels of
TGs and CHOL were significantly decreased in a significant dose-dependent manner in
HFD + oggtt-treated rats as compared to control rats (Table 1).

Table 1. Oggtt suppresses the gain in body weight and attenuates hyperlipidaemia and hepatic lipid
accumulation in rats fed the control and the high-fat diet (HFD) in a dose-dependent manner.

Control Control + Oggtt
(2 mL)

Control + Oggtt
(5 mL) HFD HFD + Oggtt

(2 mL)
HFD + Oggtt

(5 mL)

Final body
weights (g) 422 ± 42.9 389 ± 31.9 a 351 ± 22.3 ab 568 ± 41.3 abc 487 ± 36.7 abcd 422 ± 31.9 abcde

Weekly food
intake (g) 234 ± 24.5 219 ± 22.7 229 ± 26.5 322 ± 29 abc 339 ± 37.1 abc 328 ± 32.2 abc

Liver weight 13.8 ± 1.5 12.9 ± 1.3 13.7 ± 1.1 18.5 ± 1.6 abc 15.4 ± 1.5 abcd 12.8 ± 1.1 cde

Serum

TGs (mg/dL) 53.2 ± 4.9 44.6 ± 5.1 a 36.9 ± 4.1 ab 104 ± 9.8 abc 88.5 ± 7.9 abcd 63.5 ± 5.8 abcde

CHOL (mg/dL) 74.5 ± 5.8 66.3 ± 5.5 a 59.6 ± 4.1 ab 146 ± 11.4 abc 103 ± 10.5 abcd 81.5 ± 7.4 abcde

LDL-c (mg/dL) 45.6 ± 4.9 37.4 ± 4.1 a 31.1 ± 3.4 ab 83.4 ± 7.1 abc 71.2 ± 7.1 abcd 59.8 ± 6.1 abcde

FFAs (µmol/L) 512 ± 45.3 498 ± 42.2 523 ± 51.2 1032 ± 115 abc 723 ± 62.4 abcd 551 ± 44.8 abcde

Liver

TGs (mg/g) 4.7 ± 0.38 3.7 ± 0.41 a 3.01 ± 0.29 ab 7.8 ± 0.91 abc 6.3 ± 0.54 abcd 0.52 ± 85 abcde

CHOL (mg/g) 2.7 ± 0.29 2.2 ± 0.21 a 1.7 ± 0.27 ab 5.1 ± 0.72 abc 4.1 ± 0.62 abcd 3.2 ± 0.26 abcde

FFA (µmol/g) 73.4 ± 8.1 78.5 ± 6.9 75.3 ± 6.1 149 ± 11.6 abc 101 ± 13.2 abcd 84.5 ± 7.8 abcde

Faeces
TGs (mg/g) 4.4 ± 0.35 4.7 ± 0.5 4.5 ± 0.71 12.3 ± 1.43 abc 13.2 ± 1.93 abc 11.9 ± 1.6 abc

CHOL (mg/g) 5.8 ± 0.72 5.5 ± 0.78 6.1 ± 0.82 15.4 ± 1.7 abc 13.8 ± 1.9 abc 14.7 ± 1.8 abc

Data were expressed as means ± SD for n = 8 rats/group. a, vs. control; b, vs. control + oggtt (2 mL); c, vs.
control + oggtt (5 mL); d, vs. HFD; and e, vs. HFD + oggt (2 mL).

3.3. Oggtt Improves Liver Function in HFD-Fed Rats

Although there was no significant statistical difference between the control and con-
trol + oggtt (2 mL or 5 mL)-treated rats for the serum levels of ALT, AST, GTT, and CRP,
this was not the case in HFD-fed rats, which showed higher levels of the aforementioned
biomarkers (Figure 3A–D). When compared to HFD-fed rats, all of these biochemical mark-
ers were significantly and dose-dependently lower in HFD + oggtt (2 mL)- and HFD + oggtt
(5 mL)-treated rats (Figure 3A–D).

3.4. Oggtt Attenautes Hepatic Oxidaitve Stress and Inflmmation in HFD-Fed Rats

TNF-α, IL-6, and MDA levels in the liver were not significantly different between the
control, control + oggtt (2 mL), and control + oggtt (5 mL) rat groups but were significantly
lower in the HFD-fed rats (Figure 4A–E). Furthermore, the hepatic levels of SOD and
GSH were significantly reduced in HFD-fed rats as compared to all control-treated rats
(Figure 4A–E). Moreover, TNF-α, IL-6, and MDA levels in livers of rats given HFD + oggtt
(2 mL) or HFD + oggtt (5 mL) were significantly lower than in HFD-fed rats, while GSH
and SOD levels were significantly higher. However, the effect was more significant and
profound in the HFD-treated rats, which were given the highest dose (Figure 4A–E).
Notably, in the same dose-dependent manner, the levels of GSH and SOD were also
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significantly increased in the livers of the control rats, which were administered with both
doses of oggtt, as compared to control rats (Figure 4A–E).
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Figure 3. Oggtt milk prevents the increases in levels of gamma-glutamyl transpeptidase (GGT) (A),
alanine aminotransferase (B), aspartate aminotransferase (AST) (C), and C-reactive protein (D) in
the serum of high-fat diet (HFD)-fed-rats in a dose-dependent manner. Data were expressed as
means ± SD for n = 10 rats/group. a, vs. control; b, vs. control + oggtt (2 mL); c, vs. control + oggtt
(5 mL); d, vs. HFD; and e, vs. HFD + oggt (2 mL).

3.5. Oggtt Prevents Hepatic Steatosis in HFD-Fed Rats

Normal liver structure and shapes, including intact hepatocytes and sinusoids, were
seen in the control, control + oggtt (2 mL), and control + oggtt (5 mL) (Figure 5A–C).
However, increased cytoplasmic fat vacuoles accompanied by dilated sinusoids increased
immune cell infiltration, and a higher number of pyknotic cells were seen in the livers of
HFD-fed rats (Figure 5D). These effects were significantly reduced in rat livers treated with
HFD + oggtt (2 mL) (Figure 5E). HFD + oggtt (5 mL)-treated rats had almost normal liver
structures with very few fat vacuoles (Figure 5F).



Fermentation 2022, 8, 735 8 of 15
Fermentation 2022, 8, x FOR PEER REVIEW 8 of 15 
 

 

 

Figure 4. Oggtt suppresses the increase in the levels of tumour necrosis factor-α (TNF-α) (A), 

interleukin-6 (IL-6) (B), and malondialdehyde (C) in the livers of high-fed diet (HFD)-fed rats but 

stimulates the hepatic levels of superoxide dismutase (SOD) (D) and glutathione (GSH) (E) in both 

the control and HFD in a dose-dependent manner. The data are expressed as means ± SD for n = 8 

rats/group. a, vs. control; b, vs. control + oggtt (2 mL); c, vs. control + oggtt (5 mL); d, vs. HFD; and 

e, vs. HFD + oggt (2 mL); f, vs. HFD + oggt (5 mL). 

3.5. Oggtt Prevents Hepatic Steatosis in HFD-Fed Rats 

Normal liver structure and shapes, including intact hepatocytes and sinusoids, were 

seen in the control, control + oggtt (2 mL), and control + oggtt (5 mL) (Figure 5A–C). 

However, increased cytoplasmic fat vacuoles accompanied by dilated sinusoids increased 

immune cell infiltration, and a higher number of pyknotic cells were seen in the livers of 

HFD-fed rats (Figure 5D). These effects were significantly reduced in rat livers treated 

Figure 4. Oggtt suppresses the increase in the levels of tumour necrosis factor-α (TNF-α) (A),
interleukin-6 (IL-6) (B), and malondialdehyde (C) in the livers of high-fed diet (HFD)-fed rats but
stimulates the hepatic levels of superoxide dismutase (SOD) (D) and glutathione (GSH) (E) in both
the control and HFD in a dose-dependent manner. The data are expressed as means ± SD for
n = 8 rats/group. a, vs. control; b, vs. control + oggtt (2 mL); c, vs. control + oggtt (5 mL); d, vs. HFD;
and e, vs. HFD + oggt (2 mL); f, vs. HFD + oggt (5 mL).
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Figure 5. Photomicrographs of the livers of all groups of rats. H&E (200×). (A–C) Control, con-
trol + oggtt (2 mL), and control + Oggtt (5 mL) showing normal hepatocytes (long arrow), central vein
(CV), and sinusoids (short arrow). (D) HFD-fed rats show increased cytoplasmic fat vacuolization
in the hepatocytes (long thin arrow), dilated sinusoids (short thin arrow), immune cell infiltration
(short thick arrow), and pyknotic necrotic cells (arrowheads). (E) HFD + oggtt (2 mL) rats show an
improvement in the structure of the liver of cells with an obvious increase in the number of normal
cells (long arrow), a reduction in the number and size of the fat vacuolated cells (long thick arrow),
and reduced size of sinusoids (short arrow). Few immune cells are still seen (short thick arrow).
(F) HFD + oggtt (5 mL) rats show the maximum improvement in the liver structure, with most of the
hepatocytes being normal (long thin arrow), and sinusoids (short arrow). However, fewer cells still
showed fat accumulation but with smaller sizes (long thick arrow).
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4. Discussion

Previous retrospective and experimental studies have indicated that fermented milk
formed from animal or plant sources is a part of our healthy dietary pattern that could
prevent chronic disorders, including T2DM and metabolic syndrome [16,17,23]. Most
studies have focused on the fermented yogurt of camels and cows [16]. Water kefir was
found to be a less expensive and time-consuming hypoglycaemic and hypolipidemic
treatment and can potentially be a useful food for people with diabetes to control body
weight, glucose, and lipid levels [30].

However, there is still a lack of experimental evidence to support the clinical use of
fermented goat milk as a potential therapy to treat these conditions, especially T2DM, IR,
and their associated complications, such as NAFLD.

The present study has examined the effect of prepared oggtt (fermented goat milk) on
lipid and glucose homeostasis and IR as well as on hepatic structural changes, inflammatory
status, and oxidative/antioxidant balance in rats fed HFD as a model of T2DM and NAFLD.
Our data are one of the first reports supporting the recommendations for using oggtt to
alleviate NAFLD. Herein, daily treatment with fermented goat milk reduced rats’ weight
gain and reserved dyslipidaemia and improved glucose haemostasis and insulin sensitivity
by reducing fasting glucose and insulin levels. In addition, treatment with oggtt attenuated
steatosis (ballooning) improved hepatocyte structure, reduced inflammation and lipid
peroxidation markers, and stimulated endogenous antioxidant levels in the livers of HFD-
fed rats. Overall, these findings suggested that oggtt daily treatment could help with obesity
and NAFLD by lowering glucose and insulin levels and acting as an anti-inflammatory.

Chronic feeding of HFD to the rats in this study for 12 weeks promoted T2DM features
that are characterized by increased body weight, IR, fasting, hyperglycaemia, hyperinsu-
linemia, and dyslipidemia, which support many previous studies [31–33]. The biochemical
picture of dyslipidaemia in these HFD-fed rats was reflected by increased TGs, CHOL,
and FFA as well as the development of liver ballooning, which is consistent with ear-
lier studies [34–36]. This could be explained by the increased influx of FFAs from the
insulin-unresponsive adipose tissue and stimulated lipogenesis in response to IR [4,31].
Interestingly, treatment with oggtt significantly attenuated this metabolic picture in HFD-
treated rats in a dose-dependent manner and significantly reduced body weights and
hepatic steatosis, thus indicating potent anti-obesity and anti-NAFLD potentials. Similar to
our data, treatment with fermented camel milk also reduced body weights, attenuated hep-
atic steatosis, and improved peripheral insulin sensitivity in rats [18]. Similar anti-diabetic,
anti-obesity, and anti-NAFLD properties were also reported for fermented soy and cow
milk (kefir) and water kefir [20–22,30].

However, one important finding in this study is the ability of oggtt to reduce body
weights in both the control and HFD-fed rats without altering food intake. These data
could be explained by the ability of oggtt to mimic calorie restriction or mobilization of fat
in adipose tissue, two major strategies used to reduce body weight [37]. However, the effect
of fermented milk on body weight is varied and seems to be sex-dependent [16,38]. For
example, some meta-analyses have shown a significant decrease (40.99 g) per year with each
incremental serving of fermented cow milk (yogurt) [39]. However, some contradictory
studies have found an increased risk of obesity or no effect after prolonged consumption
of cow yogurt [38,40,41]. Yet, our data provide evidence for further clinical use of oggtt to
reduce body weight, which could be favoured over other fermented animal milks.

On the other hand, while treatment of increasing doses with oggtt reduced fasting
glucose and insulin levels and HOMA-IR in HFD-fed rats, they failed to induce this effect
in control rats, indicating a glucose-lowering effect only in metabolically disturbed animals.
This could be due to improving peripheral and hepatic insulin sensitivity, which could
be explained by the antioxidant protective effect of oggtt as discussed below. Indeed, IR
has been related to increased production of ROS and the scavenging ability of antioxi-
dants, which impair insulin signalling in the muscles and livers and promote prolonged
fasting hyperglycaemia and hyperinsulinemia [42,43]. However, many antioxidant drugs
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are currently available to improve peripheral insulin action and treat the hyperglycaemia
associated with T2DM. In addition, it is well-known that fermentation and the digestion of
fermented milk in the gut as well as their action on gut microbes produce several bioac-
tive compounds that may act as glucose-lowering, anti-inflammatory, and antioxidant
agents [16]. Indeed, fermented camel and cow milk reduced fasting blood glucose and
insulin levels in several experimental and clinical studies [16,18,20,44–46]. Based on these
data, we could assume that regular intake of oggtt could be an effective strategy to reduce
the risk and progression of T2DM as well as an excellent strategy to reduce the complica-
tions associated with hyperglycaemia. Several meta-analyses involving 7–9 cohort studies
have shown that yogurt supplementation reduces the risk of T2DM by 14–18% [21,47,48].

Nonetheless, dyslipidaemia, increased hepatic DNL, and hepatic steatosis are the
major hallmarks of NAFLD and are commonly seen in HFD-experimental animals [49].
Several mechanisms are responsible for developing dyslipidaemia and hepatic steatosis
post chronic administration of HFD. Initially, they include increased dietary lipid intake and
increased delivery of FFAs from the impaired adipose tissue [7]. Additionally, hypergly-
caemia, hyperinsulinemia, and oxidative stress abnormally stimulate DNL by upregulating
and activating lipid-related transcription factors such as the sterol regulatory element-
binding proteins (SREBP1 and SREBP2), which enhance the synthesis of TGs and CHOL,
respectively, by regulating diverse genes [49–51]. Hepatic fatty acid transport and oxidation
are impaired in NFALD animals and humans due to impaired levels and activities of the
peroxisome proliferator-activated receptor-alpha (PPARα), which normally stimulates FAs
oxidation [49,51].

Another important finding in this study is the observation that oggtt milk was able to
attenuate dyslipidaemia and hepatic steatosis in a dose-dependent manner in the treated
HFD-fed rats, indicating a potent hypolipidemic effect that could be related to improving
fasting hyperglycaemia and insulin sensitivity as well as the hepatic antioxidant levels.
However, the treatment with oggtt not only reduced serum and hepatic TGs, CHOL, and
FFAs in HFD-fed rats but also in control rats, where normal glucose and insulin levels were
observed. In addition, normal faecal lipid levels were observed in control and HFD-fed
rats under oggtt treatments. These data indicated that the effect of oggtt on markers of
hepatic steatosis and lipid synthesis is independent and possibly mediated by regulating
DNL-related genes (i.e., SREPB-1 and PPARα and their downstream target genes).

Similar to our results, fermented camel and soy milk and kefir also attenuated hy-
perlipidaemia and hepatic steatosis in HFD-fed rats [18,20,52]. Within this view, the
hypolipidemic effect of the fermented camel milk was attributed to its high content of
the lipid-lowering bacteria Bifidobacteria, which normally lowers plasma lipids in HFD-
fed rats; suppression of gastric emptying downregulation of SREBP1; and activation of
PPARα [18,52–54]. The main hypolipidemic effect of soy fermented milk was attributed
to a decrease in CHOL intestinal absorption caused by pancreatic lipase inhibition as well
as an increase in glucose levels and peripheral insulin sensitivity [20]. On the other hand,
improving glucose tolerance as well as increasing the availability of the PPARα-stimulating
microbes, such as Lactobacillus, Lactococcus, and Candida, were the major mechanisms
underlying the hypolipidemic effect of kefir [21,52]. Therefore, further organized studies
targeting intestinal microorganism diversity and the expression of lipogenic genes are
required to illustrate the possible mechanisms underlying the hypolipidemic effect of oggtt.

Oxidative stress and inflammation are the final damaging effects of hyperglycaemia
and IR. Indeed, the increased levels of FFAs in the liver increase the production of ROS by
impairing the mitochondria and promoting endoplasmic reticulum (ER) stress [4,6]. In ad-
dition, hyperglycaemia generates massive amounts of ROS by activating several pathways,
such as advanced glycation end products (AGEs), polyol, hexose monophosphate, and
protein kinase-c (PKC) [6]. On the other hand, inflammation in the livers of obese animals
is triggered by the influx of cytokines from the inflamed adipose tissue or ROS stimulation.
Furthermore, accumulated lipids stimulate the generation of ROS and inflammatory cy-
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tokines [55]. These ROS and inflammatory cytokines can damage the membranes, promote
DLN, and induce cell necrosis and apoptosis, thus progressing the disease to NASH [6].

Furthermore, accumulated lipid droplets in the hepatocytes can generate a large
amount of ROS from the mitochondria and stimulate TNF-α and IL-6 production from the
hepatic infiltrating and resident immune cells (i.e., macrophages, dendritic cells, and lym-
phocytes), thus exacerbating the hepatic inflammation, oxidative stress, and apoptosis [55].

In this study, we discovered that both doses of oggtt suppressed lipid peroxidation and
TNF-α and IL-6 levels while increasing SOD and GSH levels in the livers of both control
and HFD-fed rats. It also reduced liver marker enzymes in HFD-fed rats. Collectively, these
findings suggest a hepatoprotective effect mediated by reducing the generation of ROS,
suppressing inflammation, and boosting levels of the endogenous antioxidant defence
system. This seems to be an independent antioxidant and anti-inflammatory effect, which
could also be mediated by improving glycaemic control in these rats. Fermentation is a
process that increases the levels of metabolites (peptides) that are known for their antioxi-
dant, anti-inflammatory, and anti-apoptotic effects [56]. Yogurt from traditional cultures
produces specific peptides with potent immunomodulatory and antioxidant properties [16].
In addition, daily consumption of fermented camel milk reduced levels of ALT and AST in
patients with metabolic syndrome [19]. It also reduced MDA levels and stimulated GSH,
SOD, and CAT in the livers of HFD-fed rats [18]. Further, fermented soy milk prevented
renal and hepatic damage induced by HFD by alleviating oxidative stress [20].

In conclusion, the findings of this study remained very interesting and showed the
first evidence that supports the protective impact of oggtt against HFD-induced NAFLD
disease, such as the hypoglycaemic, hypolipidemic, antioxidant, and anti-inflammatory
effects of this fermented goat milk product. However, the study is still an observational
study that has some limitations. Importantly, the effect of oggtt with the intact goat milk
could be compared in future studies to determine the variations in the proposed effects. In
addition, further studies are required, including microbiota analysis as well as molecular
experiments to reveal the mechanisms behind the observed effects.
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