Q1: Suppose $(1,2,3)$ is a solution of the following linear system:

$$
\begin{aligned}
& x_{1}+2 x_{2}-x_{3}=b_{1} \\
& 2 x_{1}+3 x_{2}-3 x_{3}=b_{2}
\end{aligned}
$$

Find the values of b_{1}, b_{2}. (2 marks)
Q2: Show that the matrix A is invertible, where $A^{2}+3 A=B$ and $\operatorname{det}(\mathrm{B})=2$.
(2 marks)
Q3: Let V be the subspace of \mathbb{R}^{3} spanned by the set $S=\left\{v_{1}=(1,2,3), v_{2}=(2,4,6)\right.$, $\left.v_{3}=(4,6,6)\right\}$. Find a subset of S that forms a basis of V. (4 marks)

Q4: Show that $A=\left[\begin{array}{ccc}1 & 2 & -2 \\ 0 & 1 & 0 \\ 0 & 2 & -1\end{array}\right]$ is diagonalizable and find a matrix P that diagonalizes A. (6 marks)

Q5: Assume that the vector space \mathbb{R}^{3} has the Euclidean inner product. Apply the Gram-Schmidt process to transform the following basis vectors ($1,-2,0$), ($2,1,-1$), ($0,1,1$) into an orthonormal basis. (8 marks)

Q6: Let V be an inner product space, let v_{o} be any fixed vector in V, and let $T: V \rightarrow \mathbb{R}$ be the map defined by $T(v)=\left\langle v, v_{o}\right\rangle$ for all v in V. Show that:
(a) T is a linear transformation. (4 marks)
(b) If $v_{o} \in \operatorname{ker}(T)$, then $v_{o}=0$ and $\operatorname{ker}(T)=V$. (2 marks)

Q7: Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by:
$T\left(x_{1}, x_{2}\right)=\left(3 x_{1}-x_{2},-2 x_{1}, x_{1}+x_{2}\right)$.
(a) Find $[T]_{s, B}$ where S is the standard basis of \mathbb{R}^{3} and $B=\left\{v_{1}=(1,1), v_{2}=(1,0)\right\}$. (4 marks)
(b) Show that T is one-to-one. (2 marks)

Q8: Show that:
(a) If $T: V \rightarrow W$ is a linear transformation, then the kernel of T is a subspace of V. (2 marks)
(b) If 1 and -1 are the eigenvalues of a square matrix A of order 2 , then we have that $\mathrm{A}^{100}=\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. (2 marks)
(c) If u and v are orthogonal vectors in an inner product space, then:
$\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2} .(2$ marks $)$

