Question	Grade	Question	Grade
Question I (a)		Question III (b)	
Question I (b)		Question IV (a)	
Question I (c)		Question IV (b)	
Question II (a)		Question V (a)	
Question II (b)		Question V (b)	
Question III (a)		Total out of 40	

(1)	(2)	(3)	(4)	(5)

Question I: $[5+3+2=10]$

(a) Choose the correct answer (Write it down on the above table) :
(1) If the differential equation $\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}=0$ has a solution $y_{1}=1$, the second solution is
(i) $y=e^{-x}$.
(iii) $y=x$.
(ii) $y=e^{x}$.
(iv) None of the previous.
(2) The singular points of the differential equation $\left(9-x^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+2 y=0$ are
(i) $x=0$.
(iii) $x=0, x=-3, x=3$.
(ii) $x=-3, x=3$.
(iv) None of the previous.
(3) If the auxiliary equation of a homogeneous differential equation is ($m-$ $3)(m+2)^{2}\left(m^{2}+4 m+5\right)=0$ then
(i) $y=c_{1} e^{3 x}+c_{2} e^{-2 x}+c_{3} x e^{-2 x}+e^{-2 x}\left(c_{4} \cos \left(\frac{1}{2} x\right)+c_{5} \sin \left(\frac{1}{2} x\right)\right)$.
(ii) $y=c_{1} e^{3 x}+c_{2} e^{-2 x}+c_{3} x e^{-2 x}+c_{4} \cos \left(\frac{1}{2} x\right)+c_{5} \sin \left(\frac{1}{2} x\right)$.
(iii) $y=c_{1} e^{3 x}+c_{2} e^{-2 x}+c_{3} x e^{-2 x}+e^{-2 x}\left(c_{4} \cos x+c_{5} \sin x\right)$.
(iv) None of the previous.
(4) $\mathcal{L}^{-1}\left\{\frac{1}{(s-a)^{2}+b^{2}}\right\}$ equals
(i) $e^{a t} \sin (b t)$
(iii) $\frac{1}{b} e^{a t} \cos (b t)$
(ii) $\frac{1}{b} e^{a t} \sin (b t)$
(iv) None of the previous.
(5) The solution $x^{2}+y^{2}=c^{2}$ of the differential equation $y d y=-x d x$ is a
(i) explicit solution.
(ii) implicit solution.
(iii) None of the previous.
(b) Without solving. Classify the differential equations below as separable, linear, exact, homogeneous and/or Bernoulli:
(i) $y^{\prime}=\frac{3 x^{2}+4 x-4}{2 y-4}$.
(ii) $2 x y-9 x^{2}+\left(2 y+x^{2}+1\right) \frac{d y}{d x}=0$.
(iii) $y^{\prime}=5 y+e^{-2 x} y^{-2}$.
(c) Determine the largest region of the $x y$-plane for which the differential equation has a unique solution

$$
\frac{d y}{d x}=x-\sqrt{y-2}
$$

Question II: $[3+4=7]$

(a) Find the orthogonal trajectories of the family

$$
c x^{2}-y^{2}=1
$$

(b) Find the solution of the non-exact differential equation $\left(x^{2}-y^{2}+x\right) d x+2 x y d y=$ $0 ; x>0, y>0$ by using integration factor.

Question III: $:(2+4)+3=9]$
(a) Solve the following differential equations
(i) $y^{\prime \prime}-6 y^{\prime}-2 y=0$
(ii) $x^{2} y^{\prime \prime}-x y^{\prime}+y=2 x ; \quad x>0$.
$y(1)=0, \quad y^{\prime}(1)=0$.
(b) Using the superposition approach, to find the form of the particular solution of the nonhomogenous differential equation:

$$
y^{\prime \prime \prime}-4 y^{\prime \prime}+4 y^{\prime}=5 x^{2}-6 x+4 x^{2} e^{2 x}+3 e^{-2 x} .
$$

Question IV: $[3+4=7]$
(a) Solve the system of differential equations:

$$
\begin{gathered}
x^{\prime}(t)=-3 x+4 y \\
y^{\prime}(t)=-2 x+3 y \\
x(0)=-1, y(0)=3
\end{gathered}
$$

(b) Find the power series solutions about the ordinary point $x=1$ for the following differential equation:

$$
\begin{gathered}
y^{\prime \prime}-2(x-1) y^{\prime}+2 y=0 . \\
y(1)=0, \quad y^{\prime}(1)=1 .
\end{gathered}
$$

Question V: $[2+5=7]$
(a) Find $\mathcal{L}^{-1}\left(\frac{s-3}{s^{2}-3 s+2}\right)$.
(b) Use the Laplace transform to solve the initial value problem

$$
\frac{d^{2} y}{d t^{2}}-3 \frac{d y}{d t}+2 y=0, \quad y(0)=1, \frac{d y}{d t}(0)=0
$$

[Hint: Use Part (a)]

