College of Sciences Department of Mathematics

Final Exam

Math 508

Exercise 1

- 1. Consider the ODE $u_t + cu_x = 0$, where c is a constant.
 - (a) Show that $u = \sin(x ct)$, $u = \cos(x ct)$ and $u = 5(x ct)^2$ are solutions.
 - (b) Show that $u = 7\sin(x-ct)$, $u = 3\cos(x-ct)$ and $u = 7\sin(x-ct) 3\cos(x-ct)$ also are solutions.
- 2. Consider the ODE $u_x^2 + u_y^2 = 1$.
 - (a) Show that u = x and u = y are solutions.
 - (b) Are u = 3x and u = -4y solutions?
 - (c) Is u = x + y a solution?
 - (d) Find all solutions of the form u = ax + by, where *a* and *b* are constants.

Exercise 2

Determine whether the ODE is linear or nonlinear, and prove your result. If it is nonlinear, point out the term or terms which make it nonlinear.

- 1. $u_{xy} + 5u = x^2 y$
- 2. $u_{xx} + uu_{xy} = 1$
- 3. $y^2 u_{xx} + u_{yy} = \cos(x)$.
- 4. $u_{xxy} \sin(x)u_{yy} + x y = 0.$
- 5. $u_x + e^u u_y = 2x + 1$.

Exercise 3

We consider the following Cauchy problem

$$\begin{cases} y'(t) = f(t, y(t)), \ t \in [0, T] \\ y(0) = y_0, \end{cases}$$

where $y_0 \in \mathbb{R}$. We suppose that there exists L > 0 such that for all $t \in [0,T]$ and for all $x, y \in \mathbb{R}$,

$$|f(t,y) - f(t,x)| \le L|x - y|.$$

We consider the following midpoint method :

$$\begin{cases} \hat{y} = y_n + \frac{h}{2}f(t_n, y_n) \\ \\ y_{n+1} = y_n + hf(t_n + \frac{h}{2}, \hat{y}) \\ \\ t_{n+1} - t_n = h, \ n \ge 0. \end{cases}$$

- 1. Put the midpoint scheme in the form $y_{n+1} = y_n + h\phi(t_n, y_n, h)$, where ϕ is to be determined.
- 2. Prove that the method is consistent.
- 3. Prove that the method is stable.
- 4. Deduce that the method is convergent.

Exercise 4

We consider the following differential equation

$$y'(t) = y(t) + e^{2t},$$

with y(0) = 2.

We consider the following modified Euler method

$$\begin{cases} \hat{y} = y_n + hf(t_n, y_n) \\\\ y_{n+1} = y_n + \frac{h}{2} \left[f(t_n, y_n) + f(t_{n+1}, \hat{y}) \right] \\\\ t_{n+1} - t_n = h, \ n \ge 0. \end{cases}$$

- 1. Prove that $y(t) = e^t + e^{2t}$ is the solution of the above differential equation.
- **2.** Take h = 0, 1
 - (a) Do 3 iterations of the modified Euler method.

- (b) Compute the error on y_3 by comparing the results with the solution y(0,3).
- 3. Take h = 0,05
 - (a) Do 6 iterations of the modified Euler method.
 - (b) Compute the error on y_6 by comparing the results with the solution y(0,3).