Final Exam

Math 508

Exercise 1

1. Consider the ODE $u_{t}+c u_{x}=0$, where c is a constant.
(a) Show that $u=\sin (x-c t), u=\cos (x-c t)$ and $u=5(x-c t)^{2}$ are solutions.
(b) Show that $u=7 \sin (x-c t), u=3 \cos (x-c t)$ and $u=7 \sin (x-c t)-3 \cos (x-c t)$ also are solutions.
2. Consider the ODE $u_{x}^{2}+u_{y}^{2}=1$.
(a) Show that $u=x$ and $u=y$ are solutions.
(b) Are $u=3 x$ and $u=-4 y$ solutions?
(c) Is $u=x+y$ a solution?
(d) Find all solutions of the form $u=a x+b y$, where a and b are constants.

Exercise 2

Determine whether the ODE is linear or nonlinear, and prove your result. If it is nonlinear, point out the term or terms which make it nonlinear.

1. $u_{x y}+5 u=x^{2} y$
2. $u_{x x}+u u_{x y}=1$
3. $y^{2} u_{x x}+u_{y y}=\cos (x)$.
4. $u_{x x y}-\sin (x) u_{y y}+x-y=0$.
5. $u_{x}+e^{u} u_{y}=2 x+1$.

Exercise 3

We consider the following Cauchy problem

$$
\left\{\begin{array}{l}
y^{\prime}(t)=f(t, y(t)), t \in[0, T] \\
y(0)=y_{0},
\end{array}\right.
$$

where $y_{0} \in \mathbb{R}$. We suppose that there exists $L>0$ such that for all $t \in[0, T]$ and for all $x, y \in \mathbb{R}$,

$$
|f(t, y)-f(t, x)| \leq L|x-y| .
$$

We consider the following midpoint method :

$$
\left\{\begin{array}{l}
\hat{y}=y_{n}+\frac{h}{2} f\left(t_{n}, y_{n}\right) \\
y_{n+1}=y_{n}+h f\left(t_{n}+\frac{h}{2}, \hat{y}\right) \\
t_{n+1}-t_{n}=h, n \geq 0 .
\end{array}\right.
$$

1. Put the midpoint scheme in the form $y_{n+1}=y_{n}+h \phi\left(t_{n}, y_{n}, h\right)$, where ϕ is to be determined.
2. Prove that the method is consistent.
3. Prove that the method is stable.
4. Deduce that the method is convergent.

Exercise 4

We consider the following differential equation

$$
y^{\prime}(t)=y(t)+e^{2 t}
$$

with $y(0)=2$.
We consider the following modified Euler method

$$
\left\{\begin{array}{l}
\hat{y}=y_{n}+h f\left(t_{n}, y_{n}\right) \\
y_{n+1}=y_{n}+\frac{h}{2}\left[f\left(t_{n}, y_{n}\right)+f\left(t_{n+1}, \hat{y}\right)\right] \\
t_{n+1}-t_{n}=h, \quad n \geq 0
\end{array}\right.
$$

1. Prove that $y(t)=e^{t}+e^{2 t}$ is the solution of the above differential equation.
2. Take $h=0,1$
(a) Do 3 iterations of the modified Euler method.
(b) Compute the error on y_{3} by comparing the results with the solution $y(0,3)$.
3. Take $h=0,05$
(a) Do 6 iterations of the modified Euler method.
(b) Compute the error on y_{6} by comparing the results with the solution $y(0,3)$.
