King Saud University Faculty of Sciences Department of Mathematics

Final Examination	Math 106	Semester I - 1442
	Time: 3H	

Question 1 : (2+2+3)

a) Use Trapezoid rule with n = 5 to approximate $\int_0^5 \frac{dx}{1+x^3}$.

b) Find the number(s) c that satisfies the conclusion of the mean value theorem for $f(x) = (x-2)^2$ on [-1,5].

c) Evaluate the integral $\int x \sin(x^2) 3^{\cos(x^2)} dx$.

Question 2: (3+3+3)

a) Evaluate the integral $\int \frac{dx}{x\sqrt{x^4-1}}$. b) Compute the integral $\int \frac{\cot x dx}{\sqrt{1-\sin^4 x}}$. c) Find the indefinite integral $\int \cosh^{-1} x dx$.

Question 3 : (3+3+3)

a) Compute the integral $\int \frac{dx}{(x^2+4)^2}$. b) Evaluate the integral $\int \frac{dx}{x^{\frac{1}{2}}-x^{\frac{1}{3}}}$. c) Find $\int \frac{dx}{5+3\cos x+4\sin x}$.

Question 4 : (3+3+3)

a) Does the integral $\int_{0}^{+\infty}(1+x)e^{-2x}dx$ converge? Find its value if it does.

b) Sketch the region bounded by the curves $y = (x-1)^2$, $y = (x+1)^2$, y = 0 and find its area.

c) Find the volume obtained by revolving the region bounded by $y = x^2$ and $y = \sqrt{x}$ about the x-axis.

Question 5:(3+3)

a) Compute the area of the surface of revolution obtained by revolving the parametric curve $x = -2 + 2t^2$, y = 4t, $0 \le t \le 1$, about the *x*-axis.

b) Sketch the region inside the curve $r = 1 + \sin \theta$ and outside $r = 1 - \sin \theta$ and find its area.