King Saud University

Faculty of Sciences

Department of Mathematics

Final Examination Math 106 Semester I-1442

 Time: 3HQuestion 1 : $(2+2+3)$
a) Use Trapezoid rule with $n=5$ to approximate $\int_{0}^{5} \frac{d x}{1+x^{3}}$.
b) Find the number(s) c that satisfies the conclusion of the mean value theorem for $f(x)=(x-2)^{2}$ on $[-1,5]$.
c) Evaluate the integral $\int x \sin \left(x^{2}\right) 3^{\cos \left(x^{2}\right)} d x$.

Question 2 : $(3+3+3)$
a) Evaluate the integral $\int \frac{d x}{x \sqrt{x^{4}-1}}$.
b) Compute the integral $\int \frac{\cot x d x}{\sqrt{1-\sin ^{4} x}}$.
c) Find the indefinite integral $\int \cosh ^{-1} x d x$.

Question 3 : $(3+3+3)$
a) Compute the integral $\int \frac{d x}{\left(x^{2}+4\right)^{2}}$.
b) Evaluate the integral $\int \frac{d x}{x^{\frac{1}{2}}-x^{\frac{1}{3}}}$.
c) Find $\int \frac{d x}{5+3 \cos x+4 \sin x}$.

Question 4 : $(3+3+3)$
a) Does the integral $\int_{0}^{+\infty}(1+x) e^{-2 x} d x$ converge? Find its value if it does.
b) Sketch the region bounded by the curves $y=(x-1)^{2}, y=(x+1)^{2}$, $y=0$ and find its area.
c) Find the volume obtained by revolving the region bounded by $y=x^{2}$ and $y=\sqrt{x}$ about the $x-$ axis.

Question 5 : $(3+3)$
a) Compute the area of the surface of revolution obtained by revolving the parametric curve $x=-2+2 t^{2}, y=4 t, 0 \leq t \leq 1$, about the x-axis.
b) Sketch the region inside the curve $r=1+\sin \theta$ and outside $r=1-\sin \theta$ and find its area.

