King Saud University: Mathematics Department Math-254
Third Semester 1444 H
Final Examination
Maximum Marks $=40$
Time: 180 mins.

Name of the Student:
I.D. No. \qquad

Name of the Teacher:
Section No.
Note: Check the total number of pages are Six (6). (15 Multiple choice questions and Two (2) Full questions)

The Answer Tables for Q. 1 to Q. 15 : Marks: 2 for each one $(2 \times 15=30)$

Ps. : Mark $\{\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d$\}$ for the correct answer in the box.

Q. No.	1	2	3	4	5	6	7	8	9	10
a,b,c,d										

Q. No.	11	12	13	14	15
a,b,c,d					

Quest. No.	Marks Obtained	Marks for Questions
Q. 1 to Q. 15		30
Q. 16		5
Q. 17		5
Total		40

Question 1: The number of bisections required to solve the equation $x^{3}-2 x=1$ in $[1.5,2]$ accurate to within 10^{-4} is:
(a) 13
(b) 11
(c) 15
(d) None of these

Question 2: Given $x_{0}=0$ and $x_{1}=0.1$, then the next approximation x_{2} of the solution of the reciprocal of 5 using the Secant method is:
(a) 0.15
(b) 0.1
(c) 0.175
(d) None of these

Question 3: The order of convergence of the Newton's method for $f(x)=\tan x$ at the root $\alpha=\pi$ is:
(a) 2
(b) 1
(c) 3
(d) None of these

Question 4: The l_{∞}-norm of the inverse of the Jacobian matrix of the nonlinear system $x^{2}+y^{2}=1, x y=1$ at the point $(1,0)$ is:
(a) 2
(b) 1
(c) 0.5
(d) None of these

Question 5: In the LU factorization with Doolittles method of the matrix $A=\left(\begin{array}{cc}1 & -1 \\ \alpha & 1\end{array}\right)$, the matrix U is singular if α is equal to:
(a) ± 1
(b) 1
(c) -1
(d) None of these

Question 6: The first approximation for solving linear system $A \mathbf{x}=[1,3]^{T}$ using Jacobi iterative method wit $A=\left(\begin{array}{rr}-4 & 5 \\ 1 & 2\end{array}\right)$ and $\mathbf{x}^{(0)}=[0.5,0.5]^{T}$ is:
(a) $[0.375,1.250]^{T}$
(b) $[1.375,1.315]^{T}$
(c) $[1.375,1.250]^{T}$
(d) None of these

Question 7: Solving linear system $A \mathbf{x}=[4,5]^{T}$, with $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$, by Gauss-Seidel iterative method, if $\left\|\mathbf{x}^{(1)}-\mathbf{x}^{(0)}\right\|=0.75$, then the number of iterations needed to get an accuracy within 10^{-2} is:
(a) 10
(b) 6
(c) 8
(d) None of these

Question 8: If $\hat{x}=[1.01,0.99]^{T}$ is an approximate solution for the system of two linear equations $2 x-y=1$ and $x+y=2$, then the error bound for the relative error is:
(a) 0.045
(b) 0.035
(c) 0.025
(d) None of these

Question 9: Using data points: $(0,-2),(0.1,-1),(0.15,1),(0.2,2),(0.3,3)$, the best approximate value of $f(0.25)$ by a linear spline function is:
(a) 1.5
(b) 2.5
(c) 3.5
(d) None of these

Question 10: If $f(x)=x^{2} e^{x}$, then $f[1,1,2]$ equals to:
(a) $4 e^{2}+4 e$
(b) $4 e^{2}-4 e$
(c) $4 e^{2}-3 e$
(d) None of these

Question 11: Using data points: $(0,-2),(0.1,-1),(0.15,1),(0.2,2),(0.3,3)$, the best approximation of $f^{\prime}(0.25)$ using 3 -point difference formula is:
(a) 10.0
(b) 20.0
(c) 15.0
(d) None of these

Question 12: Using data points: $(0,-2),(0.1,-1),(0.15,1),(0.2,2),(0.3,3)$, then the worst approximation of $f^{\prime \prime}(0.15)$ using 3 -point difference formula is:
(a) -44.44
(b) -6.67
(c) -3.33
(d) None of these

Question 13: Using data points: $(0,-2),(0.1,-1),(0.15,1),(0.2,2),(0.3,3)$, the best approximate value of the integral $\int_{0}^{0.3} f(x) d x$, using the composite Trapezoidal rule is:
(a) 0.25
(b) 0.1
(c) 0.15
(d) None of these

Question 14: If $f(0)=3, f(1)=\frac{\alpha}{2}, f(2)=\alpha$, and the Simpson's rule for $\int_{0}^{2} f(x) d x=4$, then the value of α is:
(a) 1.5
(b) 2.0
(c) 3.0
(d) None of these

Question 15: Given $x y^{\prime}+y=1, y(1)=0$, the approximate value of $y(2)$ using Euler's method when $n=1$ is:
(a) 1.5
(b) 1.0
(c) 2.0
(d) None of these

Question 16: Use the following table to find the best approximation of $f(0.6)$ by using quadratic Lagrange interpolating polynomial for equally spaced data points:

$$
\begin{array}{c|ccccccc}
x & 0.15 & 0.2 & 0.3 & 0.5 & 0.55 & 0.8 & 1 \\
\hline f(x) & -0.0427 & -0.0644 & -0.1084 & -0.1733 & -0.1808 & -0.1428 & 0
\end{array}
$$

The function tabulated is $f(x)=x^{2} \ln x$. Compute the absolute error and an error bound (using error bound formula for equally spaced data points) for the approximation.

Question 17: Use best integration rule to find the absolute error for the approximation of $\int_{0}^{1.2} f(x) d x$ by using the following set of data points:

$$
\begin{array}{l|lllllllllllll}
x & 0.0 & 0.1 & 0.21 & 0.3 & 0.42 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 1.0 & 1.1 & 1.2 \\
\hline f(x) & 1.00 & 1.10 & 1.19 & 1.26 & 1.33 & 1.38 & 1.43 & 1.47 & 1.51 & 1.52 & 1.54 & 1.55 & 1.56
\end{array}
$$

The function tabulated is $f(x)=x+\cos x$. How many points approximate the given integral to within accuracy of 10^{-6} ?

