King Saud University:Mathematics DepartmentMath-254Third Semester1444 HFinal ExaminationMaximum Marks = 40Time: 180 mins.

Name of the Student:—	I.D. No.	

Name of the Teacher: ______ Section No. _____

Note: Check the total number of pages are Six (6). (15 Multiple choice questions and Two (2) Full questions)

The Answer Tables for Q.1 to Q.15 : Marks: 2 for each one $(2 \times 15 = 30)$

Ps. : Mark {a, b, c or d} for the correct answer in the box.										
Q. No.	1	2	3	4	5	6	7	8	9	10
a,b,c,d										

Q. No.	11	12	13	14	15
a,b,c,d					

Quest. No.	Marks Obtained	Marks for Questions
Q. 1 to Q. 15		30
Q. 16		5
Q. 17		5
Total		40

- **Question 1:** The number of bisections required to solve the equation $x^3 2x = 1$ in [1.5, 2] accurate to within 10^{-4} is:
 - (a) 13 (b) 11 (c) 15 (d) None of these
- Question 2: Given $x_0 = 0$ and $x_1 = 0.1$, then the next approximation x_2 of the solution of the reciprocal of 5 using the Secant method is:
 - (a) 0.15 (b) 0.1 (c) 0.175 (d) None of these
- Question 3: The order of convergence of the Newton's method for $f(x) = \tan x$ at the root $\alpha = \pi$ is:
 - (a) 2 (b) 1 (c) 3 (d) None of these
- Question 4: The l_{∞} -norm of the inverse of the Jacobian matrix of the nonlinear system $x^2 + y^2 = 1$, xy = 1 at the point (1,0) is:
 - (a) 2 (b) 1 (c) 0.5 (d) None of these

<u>Question 5</u>: In the LU factorization with Doolittles method of the matrix $A = \begin{pmatrix} 1 & -1 \\ \alpha & 1 \end{pmatrix}$, the matrix U is singular if α is equal to:

(a) ± 1 (b) 1 (c) -1 (d) None of these

Question 6: The first approximation for solving linear system $A\mathbf{x} = [1,3]^T$ using Jacobi iterative method wit $A = \begin{pmatrix} -4 & 5 \\ 1 & 2 \end{pmatrix}$ and $\mathbf{x}^{(0)} = [0.5, 0.5]^T$ is:

(a) $[0.375, 1.250]^T$ (b) $[1.375, 1.315]^T$ (c) $[1.375, 1.250]^T$ (d) None of these

Question 7: Solving linear system $A\mathbf{x} = [4, 5]^T$, with $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, by Gauss-Seidel iterative method, if $\|\mathbf{x}^{(1)} - \mathbf{x}^{(0)}\| = 0.75$, then the number of iterations needed to get an accuracy within 10^{-2} is:

(a) 10 (b) 6 (c) 8 (d) None of these

Question 8: If $\hat{x} = [1.01, 0.99]^T$ is an approximate solution for the system of two linear equations 2x - y = 1 and x + y = 2, then the error bound for the relative error is:

- (a) 0.045 (b) 0.035 (c) 0.025 (d) None of these
- Question 9: Using data points: (0, -2), (0.1, -1), (0.15, 1), (0.2, 2), (0.3, 3), the best approximate value of f(0.25) by a linear spline function is:
 - (a) 1.5 (b) 2.5 (c) 3.5 (d) None of these

Question 10: If $f(x) = x^2 e^x$, then f[1, 1, 2] equals to:

- (a) $4e^2 + 4e$ (b) $4e^2 4e$ (c) $4e^2 3e$ (d) None of these
- Question 11: Using data points: (0, -2), (0.1, -1), (0.15, 1), (0.2, 2), (0.3, 3), the best approximation of f'(0.25) using 3-point difference formula is:
 - (a) 10.0 (b) 20.0 (c) 15.0 (d) None of these
- Question 12: Using data points: (0, -2), (0.1, -1), (0.15, 1), (0.2, 2), (0.3, 3), then the worst approximation of f''(0.15) using 3-point difference formula is:
 - (a) -44.44 (b) -6.67 (c) -3.33 (d) None of these

Question 13: Using data points: (0, -2), (0.1, -1), (0.15, 1), (0.2, 2), (0.3, 3), the best approximate value of the integral $\int_0^{0.3} f(x) dx$, using the composite Trapezoidal rule is:

(a) 0.25 (b) 0.1 (c) 0.15 (d) None of these

Question 14: If f(0) = 3, $f(1) = \frac{\alpha}{2}$, $f(2) = \alpha$, and the Simpson's rule for $\int_0^2 f(x) dx = 4$, then the value of α is:

(a) 1.5 (b) 2.0 (c) 3.0 (d) None of these

Question 15: Given xy' + y = 1, y(1) = 0, the approximate value of y(2) using Euler's method when n = 1 is:

(a) 1.5 (b) 1.0 (c) 2.0 (d) None of these

Question 16: Use the following table to find the best approximation of f(0.6) by using quadratic Lagrange interpolating polynomial for equally spaced data points:

The function tabulated is $f(x) = x^2 \ln x$. Compute the absolute error and an error bound (using error bound formula for equally spaced data points) for the approximation.

Question 17:
Use best integration rule to find the absolute error for the approximation of

 $\int_{0}^{1.2} f(x) dx$ by using the following set of data points:

 $\frac{x}{f(x)} | 0.0 \ 0.1 \ 0.21 \ 0.3 \ 0.42 \ 0.5 \ 0.6 \ 0.7 \ 0.8 \ 0.9 \ 1.0 \ 1.1 \ 1.2 \ f(x) | 1.00 \ 1.10 \ 1.19 \ 1.26 \ 1.33 \ 1.38 \ 1.43 \ 1.47 \ 1.51 \ 1.52 \ 1.54 \ 1.55 \ 1.56 \ 1$

The function tabulated is $f(x) = x + \cos x$. How many points approximate the given integral to within accuracy of 10^{-6} ?

.