Q1: If $A=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right], B=\left[\begin{array}{lll}1 & 0 & 2 \\ 2 & 2 & 0\end{array}\right], C=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 3 & 2 \\ 0 & 1 & 1\end{array}\right]$ and $P(x)=x^{2}+x-2$, then find the following:
(a) $P(A)$ (3 marks)
(b) $\operatorname{adj}\left(\mathrm{BB}^{\top}\right)$ in details (2 marks)
(c) the inverse of C (3 marks)
(d) Solution of $\mathrm{Bx}=0$ by Gauss-Jordan Elimination. (4 marks)
(e) $T_{B}(1,2,3) .(2$ marks)

Q2: Find the determinant of the following matrix, then find the cofactor C_{12} :
(5 marks)

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 3 & 3 & 4 \\
1 & 2 & 3 & 5 \\
1 & 2 & 5 & 4
\end{array}\right]
$$

Q3: (a) If $E=\left[\begin{array}{ccc}a & b & a \\ e & -2 a & e \\ a & a & a\end{array}\right]$, then find $\operatorname{det}(\mathrm{E})$ and $\operatorname{tr}(\mathrm{E})$. (2 marks)
(b) Prove that if A is an invertible symmetric matrix, then A^{-1} is symmetric. (2 marks)
(c) If A is an invertible matrix of size 3×3 and $|A|=2$, then find $\left|2\left(A^{\top}\right)^{-1}\right|$. (2 marks)

