Second Semester 1442

First Exam

King Saud University

(without calculators)

Time: 8 - 9:30 am

College of Science

Wednesday 5-7-1442

240 Math

Math. Department

Q1: If
$$A = \begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix}$$
, $B^T = \begin{bmatrix} 1 & 2 \\ 0 & 2 \\ -1 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 2 \end{bmatrix}$ and $P(x) = \frac{1}{4}x^2 - x + 2$, then

find the following:

- (a) P(A) (3 marks)
- (b) adj(A) in details (2 marks)
- (c) the inverse of C (3 marks)
- (d) the solution set of Bx=0 by Gauss-Jordan Elimination. (3 marks)
- (e) $T_B(1,2,3)$. (1 mark)
- Q2: Find the determinant of the following matrix, then find the cofactor C_{12} : (4 marks)

$$\begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 5 & 4 & 4 \\ 3 & 6 & 6 & 7 \\ 4 & 8 & 10 & 8 \end{bmatrix}$$

- Q3: (a) Prove that if A is an invertible matrix, then $det(A^{-1})=(det(A))^{-1}$. (2 marks)
- (b) Prove that if A is an invertible symmetric matrix, then A⁻¹ is symmetric.
- (2 marks)

(c) If
$$B = \begin{bmatrix} 1 & 5 \\ 1 & 2 \end{bmatrix}$$
, then find tr(B). (1 mark)

- (d) If A is a square matrix of order 2 such that det(A)=3, then find $det(2(A^T)^{-1})$. (2 marks)
- (e) If the solution set of the system Ax=b is $\{(2r+1,s-1):r,s\in\mathbb{R}\}$, then find the solution set of the system Ax=0. (2 marks)