(without calculators)
Wednesday 5-7-1442

Time: 8-9:30 am
240 Math

College of Science
Math. Department

Q1: If $A=\left[\begin{array}{ll}2 & 4 \\ 1 & 2\end{array}\right], B^{T}=\left[\begin{array}{cc}1 & 2 \\ 0 & 2 \\ -1 & 0\end{array}\right], C=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 2\end{array}\right]$ and $P(x)=\frac{1}{4} x^{2}-x+2$, then find the following:
(a) $P(A)$ (3 marks)
(b) $\operatorname{adj}(A)$ in details (2 marks)
(c) the inverse of C (3 marks)
(d) the solution set of $\mathrm{Bx}=0$ by Gauss-Jordan Elimination. (3 marks)
(e) $T_{B}(1,2,3)$. (1 mark)

Q2: Find the determinant of the following matrix, then find the cofactor C_{12} : (4 marks)

$$
\left[\begin{array}{cccc}
1 & 2 & 2 & 2 \\
2 & 5 & 4 & 4 \\
3 & 6 & 6 & 7 \\
4 & 8 & 10 & 8
\end{array}\right]
$$

Q3: (a) Prove that if A is an invertible matrix, then $\operatorname{det}\left(A^{-1}\right)=(\operatorname{det}(A))^{-1} .(2$ marks $)$
(b) Prove that if A is an invertible symmetric matrix, then A^{-1} is symmetric. (2 marks)
(c) If $B=\left[\begin{array}{ll}1 & 5 \\ 1 & 2\end{array}\right]$, then find $\operatorname{tr}(B)$. (1 mark)
(d) If A is a square matrix of order 2 such that $\operatorname{det}(A)=3$, then find $\operatorname{det}\left(2\left(A^{\top}\right)^{-1}\right)$. (2 marks)
(e) If the solution set of the system $A x=b$ is $\{(2 r+1, s-1): r, s \in \mathbb{R}\}$, then find the solution set of the system $A x=0$. (2 marks)

