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Gauss-Jordan Elimination

Any linear system must have exactly one
solution, no solution,  or an infinite number of
solutions.  Just as in the 2X2 case, the term
consistent is used to describe a system with a
unique solution, inconsistent  is used to
describe a system with no solution, and
dependent  is used  for a system with an infinite
number of solutions.
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Karl Frederick Gauss:

 At the age of seven, Carl Friedrich
Gauss started elementary school, and
his potential was noticed almost
immediately. His teacher, Büttner, and
his assistant, Martin Bartels, were
amazed when Gauss summed the
integers from 1 to 100 instantly by
spotting that the sum was 50 pairs of
numbers each pair summing to 101.
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Matrix representation of a system of linear equations

  

2x + 3y + 5z = 7
!3x + y + 4z = 0
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,   for the constant terms

 A !X = B
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Matrix representation of a system of linear equations

   

a11x1 + a12x2 +L+ a1nxn = b1

a21x1 + a22x2 +L+ a2nxn = b2

.
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am1x1 + am2x2 +L+ amnxn = bm
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The augmented matrix

   

a11 a12 L a1n b1

a21 a22 L a2n b2
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 For any system of linear equations
we can form the so called
augmented matrix. This is a matrix
which contains both the coefficients
of the unknown quantities and the
constants terms.

 With  this matrix we can perform all the
actions which we perform on the equations
when we try to solve a system.

 We can do the following actions on this
matrix:

 A) We can interchange the positions of two
rows. Ri ↔ RLj

 B) We can multiply one row with a number.
Ri → λRi

 C) We can add to one row another row
multiplied by a number. Ri → Ri+µRj
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Matrix representations of consistent, inconsistent and
dependent systems

 The following matrix
representations of three linear
equations in three unknowns
illustrate the three different
cases:

 Case I : consistent

 From this matrix representation,
you can determine that

 x = 3, y = 4 and z= 5

1 0 3
0 1 0 4

50 1

0

0
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Matrix representations of consistent, inconsistent and
dependent systems

 Case 2:

 Inconsistent case:

 From the second row of the
matrix, we find that

   0x + 0y +0z =6     or
              0 = 6

an impossible equation. From this,
we conclude that there are no
solutions to the linear system.

1 2 3 4
0 0 0 6
0 0 0 0
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Matrix representations of consistent, inconsistent and
dependent systems

 Case 3:

 Dependent system

 When two rows of a matrix
representation consist entirely
of zeros, we conclude that two
the linear equations were
identical and therefore, the
system is dependent.

 ( true for  case 3 but not in
general)

1 2 4
0 0 0 0

00 0
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Reduced row echelon form

A matrix is said to be in reduced row echelon form or, more
simply, in reduced form, if :

 Each row consisting entirely of zeros is below any row
having at least one non-zero element.

 The leftmost nonzero element in each row is 1.

 All other elements in the column containing the leftmost 1
of a given row are zeros.

4. The leftmost 1 in any row is to the right of the leftmost 1 in
the row above.
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Examples of reduced row echelon form:

1 0 3
0 1 0 4

50 1

0

0
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1 2 3 4
0 0 0 6
0 0 0 0
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1 3 0 0 2
0 0 1 0 7
0 0 0 1 8

! " #
$ %
$ %
$ %& '

a) b)

c)
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Solving a system using Gauss-Jordan Elimination

Problem:  Solve:  x + y – z     =-2
            2x – y + z     = 5

   -x + 2y + 2z = 1
1. We begin by writing the system
       as an augmented matrix

 We already have a 1 in the diagonal
position of first column.

 Now we want 0’s below the 1.
  The first 0 can be obtained by

multiplying row 1 by -2 and adding the
results to row 2 :
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Example continued:

 The second 0 can be obtained
by adding row 1 to row 3:

 Moving to the second column, we
want a 1 in the diagonal position
(where there is now –3). We get this
by dividing every element in row 2
by -3:

 Row 1 is unchanged

 Row 2 is unchanged

 Row 1 is added to Row 3

Row 1 is unchanged

Row 2 is divided by –3

Row 3 is unchanged



H.Melikian/1210 13

Example continued:

 To obtain a 0 below the 1 , we
multiply row 2 by -3 and add it
to the third row:

Row 1 is unchanged
Row 2 is unchanged
-3 times row 2 is added to row 3

 To obtain a 1 in the third
position of the third row, we
divide that row by 4. Rows 1
and 2 do not change.
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Example continued:

We can now work upwards to get
zeros in the third column above
the 1 in the third row. We will add
R3 to R2 and replace R2 with that
sum and add R3 to R1 and replace
R1 with the sum . Row 3 will not
be changed. All that remains to
obtain reduced row echelon form
is to eliminate the 1 in the first
row, 2nd position.

1 1 0
0 1 0 1

20 1

0

0
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& '
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Example continued:

To get a zero in the first row and
second position, we multiply row 2 by
-1 and add the result to row 1 and
replace row 1 by that result. Rows 2
and 3 remain unaffected.

1 0 1
0 1 0 1

20 1

0

0

! "
# $

%# $
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& '

We can now “read” our solution from this last matrix.

We have x = 1, y = -1 and z = 2. Written as an ordered triple, we have

(1, -1, 2). This is a consistent system with a unique solution.

Final result:
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Example 2
 Solve the system: 3x – 4y + 4z = 7

x – y – 2z = 2
2x – 3y + 6z = 5
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Example 2 continued

 Begin by representing the
system as an augmented
matrix:

3 4 4 7
1 1 2 2
2 3 6 5

! " #
$ %" "$ %
$ %"& '

 Since the first number in the
second row is a 1, we
interchange rows 1 and 2 and
leave row 3 unchanged:

1 1 2
3 4 4 7

53 6

2

2
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Continuation of example 2:

In this step, we will get zeros in the entries
beneath the 1 in the first column: Multiply
row 1 by -3 , add to row 2 and replace row 2;
and -2*R1+R3 and replace R3:

1 1 2
0 1 10 1

11 10

2

0

! "#
$ %

#$ %
$ %#& '

#

To get a zero in the third row, second entry
we multiply row 2 by -1 and add the result to
R3 and replace R3 by that sum: Notice this
operations “wipes out” row 3 so row consists
entirely of zeros.

1 1 2 2
0 1 10 1
0 0 0 0

! " " #
$ %"$ %
$ %& '

 This matrix corresponds to a dependent system with an infinite
 number of solutions:
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Representation of a solution of a dependent system

We can interpret the second row of this
matrix as –y + 10z=1

Or 10z – 1 = y
So, if we let z = t (arbitrary real number,

then in terms of t,
 y = 10t-1.

Next we can express the variable x n terms of
as follows: From the first row of the matrix,
we have

      x – y -2z = 2. If z = t and
      y = 10t – 1, we have
     x – (10t-1)-2t = 2 or x -12t +1=2 ; x -12t = 1 or

x = 12t+1

Our general solution can now be expressed in
terms of t:

(12t+1,10t-1,t), where t is an arbitrary
real number

1 1 2 2
0 1 10 1
0 0 0 0

! " " #
$ %"$ %
$ %& '
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REDUCED MATRIX

     A matrix is a REDUCED MATRIX or is said to be in
REDUCED FORM  if

         a)      each row consisting entirely of zeros is below any  row
having at least one nonzero element;

     (b)   the left-most nonzero element in each row is 1;

     (c)   all other elements in the column containing the left-most
1 of a given row are zeros;

    (d)   the left-most 1 in any row is to the right of the left-most 1
in any row above.
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GAUSS-JORDAN ELIMINATION

  Step 1. Choose the leftmost nonzero column and use appropriate row
operations  to get a 1 at the top.

   Step 2. Use multiples of the row containing the 1 from step 1 to get
zeros in all remaining places in the column containing this 1.

   Step 3. Repeat step 1 with the SUBMATRIX formed by (mentally)
deleting the row used in step 2 and all rows above this row.

  Step 4. Repeat step 2 with the ENTIRE MATRIX, including the
mentally deleted rows. Continue this process until the entire matrix
is in reduced form.

[Note: If at any point in this process we obtain a row with all zeros to the left of the vertical
line and a nonzero number to the right, we can stop before we find the reduced form, since
we will have a contradiction: 0 = n, n ≠ 0. We can then conclude that the system has no
solution
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Solving a system using Gauss-Jordan Elimination

 Write the augmented matrix of system and apply all the steps of
Gauss-Jordan elimination to bring the matrix into reduced form

 If at any point in this process we obtain a row with all zeros to the left of the
vertical line and a nonzero number to the right, we can stop –

                                    the system has no solution
  3.  If the number of leftmost 1’s in reduced augmented coefficient matrix

is equal to the number of variables in the system and there are no
contradictions, then system is consistent (independent) and has a
single (unique) solution.

4. If the number of leftmost 1’s in reduced augmented coefficient matrix is
less than the number of variables in the system and there are no
contradictions, then system is consistent (dependent) and has a
infinitely many solution.


