Benha University Faculty of Science Department of Geology

Course Specification 430 G: Geotectonics and geochronology

A- Affiliation

Relevant program:

Department offering the program:

Department offering the course:

Geology B.Sc. Program

Department of Geology

Department of Geology

Academic year/level: Fourth level

B - Basic information

Title: Geotectonics and Code: 430 G Year/level: fourth level

geochronology

Teaching Hours: Lectures: 2 Tutorial: 0

Practical: 2 Total: 3 h/week

C - Professional information

1 - Course Learning Objectives:

- > To reconstruct the major tectonic events of the Earth's crust, deformation, kinematics and stability.
- > To investigate of the concept of plate tectonics.
- > To deduce the role of radiogenic isotopes in identifying the age and source of crustal rocks.

2 - Intended Learning Outcomes (ILOS)

a - Knowledge and understanding:

On successful completion of the course, the student should:

- a.1. recognize the historical development of ideas and scientific breakthroughs associated with formulation of the Plate Tectonics theory,
- a.2. assess the basic physical and geochemical processes that constrain the modern models for Earth's internal structure.
- a.3. demonstrate the use and importance of radiogenic isotopes in studying geological and geotectonic subjects,
- a.4. analyze the radigenic isotope data for age and setting of formation.

b - Intellectual skills:

On successful completion of the course, the student should be able to.

- b1- recognize the evolution of Eart's crust in view of the Plate Tectonics theory,
- b2- envisage the geometry of plate margins and evolution of continents and oceans

- along the time,
- b3- explain the basic and advanced research points related to the evolution of Plate Tectonics,
- b4-investiagte the mutual relationship between radiogenic isotope geochemistry of the crustal rocks and their evolution along the Earth's history.
- b5- recount the different systems of selected radiogenic isotopes, e.g., U (Th/Hf), K/Ar, and Rb/Sr.

c - Practical and professional skills:

On successful completion of the course, the student should be professionally able to:

- c1- reconstruct the geotectonc setting using structure and geochemical data,
- c2- analyze bulk rock geochemical and radiogenic isotope data for the geotectonic settings,
- c3- use the different software and apply methods to solve geological problems,
- c4- interpret the isotope value data of a rock or ore deposit for the setting of a specific orogeny.

d - General skills:

On successful completion of the course, the student should be able to:

- d1- review available data from publication and other resources,
- d2- analyze the results in a meaningful readable final form,
- d3- work in team or mosaic a piece of work with other peers.

3 – Contents

Topic	Lecture hours	Tutorial hours	Practical hours
Introduction to Geotectonics and plate boundaries	2	0	2
2. Internal structure of the Earth	2	0	2
3. Continental drift and ocean floor spreading	2	0	2
4. Oceanic ridges and transform faults	2	0	2
5. Subduction zones, and collistional sutures	2	0	2
6. Impact of the plate tectonics	2	0	2
7. Introduction to radiogenic isotopes of elements	2	0	2
8. Atom structure and decay	2	0	2
9. Radiometric decay	2	0	2
10. Age determination by isotopes	2	0	2
11. Geochronolcial applications	2	0	2
12. Applications and advnces	2	0	2
Total hours	24	0	24

4 - Teaching and Learning methods:

Intended Learning Outcomes				Presentations & Movies	Discussions & Seminars	Practical	Problem solving	Brain storming
nding	a1	recognize the historical development of ideas and scientific breakthroughs associated with formulation of the Plate Tectonics theory,	х	0	х	0	0	х
Knowledge & Understanding	a2	assess the basic physical and geochemical processes that constrain the modern models for Earth's internal structure,	х	х	0	0	0	0
Knowledge	a3	demonstrate the use and importance of radiogenic isotopes in studying geological and geotectonic subjects,	х	0	0	0	0	х
-	a4	analyze the radigenic isotope data for age and setting of formation.	х	х	0	0	Х	х
	b1	recognize the evolution of Eart's crust in view of the Plate Tectonics theory,	х	0	0	0	х	0
	b2	envisage the geometry of plate margins and evolution of continents and oceans along the time,	х	0	0	0	х	х
Intellectual Skills	b3	explain the basic and advanced research points related to the evolution of Plate Tectonics,	х	0	0	0	х	0
Intellec	b4	investiagte the mutual relationship between radiogenic isotope geochemistry of the crustal rocks and their evolution along the Earth's history.	х	0	0	0	0	х
	b5	recount the different systems of selected radiogenic isotopes, e.g., U (Th/Hf), K/Ar, and Rb/Sr.	х	0	0	0	0	x
Practical and professional skills	c1	reconstruct the geotectonc setting using structure and geochemical data,	х	0	0	0	х	х
	c2	analyze bulk rock geochemical and radiogenic isotope data for the geotectonic settings,	х	0	0	0	х	х
	c3	use the different software and apply methods to solve geological problems,	х	0	0	0	х	х
	c4	interpret the isotope value data of a rock or ore deposit for the setting of a specific orogeny.	х	0	0	0	х	0
General Skills	d1	review available data from publication and other resources,	х	х	0	0	0	х
ğő	d2	analyze the results in a meaningful	Х	Х	0	0	0	Х

	readable final form,						
D3	work in team or mosaic a piece of work	х х	,,			.,	,,
	with other peers.		0	U	, X	X	

5- Students' Assessment Methods and Grading:

- 5.1. Discussion, class activites and quizzes to assess the student progress and personal attitude,
- 5.2. Assignments to assess the student independen work,
- 5.3. Written mid-term exam to ensure the student progress and discover the shortage,
- 5.4. Final written and oral exam to evaluate students and promote for other consequent courses.

Tools	To Measure	Time schedule	Grading
Semester Work	a1, a2, a3, b2, and d1	Fifth week	5 %
Mid-Term Exam	a1, a5, b3, b4.	Seventh week	5 %
Oral exam	a2, a3, a4, a5, b5, b1, c2, c3	Thirteenth week	10 %
Written exam	a1, a2, a3, a5, b1, b2, b4, b5,	Fourteenth week	80 %
	c1, c2, c3, d1.		
	100 %		

6- List of references:

6-1 Course notes

Lecture notes prepared by the course instructor(s) Power point presentations

6-2 Required books

None

6-3 Recommended books

Passchier C. W. and Trouw R. A. J. 1996. Micro-tectonics

Developments in Geotectonics Elsevier

Radiometric dating of rocks and minerals. Christopher T. Harper. Dowden, Hutchinson & Ross, 1973

6-4 Periodicals, Web sites, etc.

Geotectonics

http://www.springer.com/earth+sciences+and+geography/geology/journal/11479 http://www.platetectonics.com/book/

7- Facilities required for teaching and learning:

Data show
Sound system to ensure the ease listening
PCs and software
Electronic library

Course coordinators: Prof. Dr. Zakaria Hamimi

Dr. Basem Zoheir

Head of the Department: Prof. Dr. Mohamed El-Fakharany

Date: 2014