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Abstract We consider statistical experiments associated with a Lévy process X observed along a deterministic scheme
(iun, 1 ≤ i ≤ n). We assume that under a probability Pθ , at each t > 0, Xt has a density gθ

t regular enough relative to a pa-
rameter θ ∈ (0,+∞). We prove that the sequence of the associated statistical models has the LAN property at each θ , and we
investigate the case when X is the product of an unknown parameter θ by an another Lévy process Y with known character-
istics, by giving examples with Y attracted by a stable process.
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1 Introduction

Motivated by mathematical finance problems (see [4]), this work is a part of an ambitious program consisting in the estimation
of the parameter θ intervening in the stochastic differential equation driven by a known Lévy process Y :

dXt = b(θ ,X)dt +a(θ ,X)dYt , (1)

In these kind of models, the property of local asymptotic normality property (LAN) has become an important issue, cf. Lecam
[15]. This property is described as follows: a sequence of families of probabilities (Pn

θ
)

θ∈Θ indexed by an open set Θ ⊂R
is said to have the LAN property at each point θ0 ∈Θ with speed

√
n, if the sequence of probabilities localized around θ0,

(Pn
θ0+n−1/2 θ

)
θ∈{ξ/θ0+n−1/2 ξ∈Θ}

, converges, in the sense of weak convergence of the associated likelihood processes, to a Gaus-

sian shift (P′
θ
)

θ∈R, see Subsection 2.2 for a precise definition. The LAN property allows to recover the so-called asymptotic
Fisher information quantity I(θ0), which is crucial in any estimation procedure since 1/I(θ0) provides the lower bound of
the variance of any estimator of θ0.

The LAN property was investigated by Akritas [3] in models associated with a Lévy processes X observed continuously
in time over the interval [0,n], n→∞. He obtains the LAN property under differentiability assumptions on the characteristics
(bθ ,cθ ,νθ ) of X . With the same asymptotic, and under some conditions, Luschgy [16] obtained the Local Asymptotic Mixed
Normality (LAMN) property on models associated with semimartingales. Notice that LAMN property is a more general
notion than the LAN one, since it allows the Fisher information quantity to be random. Study of Lévy models are motivated
amongst others by mathematical finance (see [4] for instance). With the asymptotic [0,n], n→ +∞, the estimation methods
do not seem to be feasible in practice. Recent tendency focuses on discretized schemes, i.e. observations of the process X
along the discrete scheme

Xiun , 1 ≤ i ≤ n, n→ +∞, (2)

In practice, the most interesting case of the discretization path un = 1/n turns out to be relatively difficult. Our work is a
part of an ambitious program consisting in the study of the LAN or LAMN properties and the estimation of the parameter θ
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intervening in discrete observations of the process X solution of the stochastic differential equation

dXt = b(θ ,X)dt +a(θ ,X)dYt , (3)

driven by a known Lévy process Y . The classical case of a Brownian motion Y in (3) has been widely treated, see Genon-
Catalot and Jacod [8] for instance. When Y in (3) is a Lévy process attracted by a symmetric stable process with index
α ∈ (1,2], we refer to Clément and Gloter [6]. In case of constant coefficients, i.e. models of the form

dXt = θ1 dt +θ2 dYt , (4)

we refer to the works of Aït-Sahalia and Jacod [1], Masuda [17], Kawai and Masuda [13, 14]. Our investigation goes to same
direction of Aït-Sahalia and Jacod [2], who studied the LAN property and the problem of estimation of the parameter (θ1,θ2)
involved in the model of a log-asset price X , solution of (4), in the case when Y is a standard symmetric stable process with
index α ∈ (0,2]. Section 4 below completes their situation in case where Y is a general stable process, eventually mixed. The
last direction was initiated Rammeh [20] with observations according to random schemes (T(i,n), 1 ≤ i ≤ n) for the scale
model

X = θY (5)

where θ is a real unknown real parameter and Y is a symmetrical standard α-stable process. He showed that the LAN property
always occurs and his main arguments strongly rely to the linearity in θ , to the fact that stable processes have the temporal
scaling property and to the asymptotic behavior of the stable densities. Theorem 4.1 below, generalizes Rammeh’s results in
the context of deterministic discrete scheme T(i,n) = iun.

Because of the intricacy of the case 3, we first focus on the following model which contains (5) and intercepts (3): we assume
that for all θ ∈Θ , under Pθ , X is a Lévy process, null at t = 0, having the Lévy exponent

ϕθ (u) = logEPθ
[exp iuX1 ] = iubθ −

cθ
2 u2

2
+∫

R
(eiuy−1− iuy1l∣y∣≤1 )µθ (dy), (6)

where bθ ∈R, cθ ∈R+ and µθ is a positive measure on R which integrates min(y2,1). For sake of clarity, we take Θ is open
interval R. We always assume, as done in the pre-cited literature,

• the existence of densities gθ
t such that θ ↦ gθ

t is regular enough;
• the convergence, as n→∞, of some integrals depending on gθ

un ,

Theorem 3.1 and Corollary 3.3 below provide conditions ensuring the LAN property for the model (6), when the process X
is observed along the discrete scheme (2). Denoting ḡθ

un the logarithmic derivative of gθ
un relative to θ , the asymptotic Fisher

information quantity at each θ , when it is finite non-null, should be equal to

I(θ) = lim
n→∞∫ (ḡθ

un)
2(x)gθ

un(x)dx . (7)

It is still be difficult to find Lévy processes fulfilling (7), because even though the densities gθ
t exists, they are not explicit

in general, and moreover degenerate when t → 0. For this reason, Corollary 3.3 focuses on the linear dependance (4) of the
characteristics relative to θ , and the previous conditions are slightly simplified. For this case, without loss of generality, we
consider that Θ contains a reference value, 1 for example, and we exclude the value 0 in order to avoid trivialities. We only
need to assume, in this case, some regularity on x↦ g1

un(x) and conditions of the kind (7) for θ = 1. Denoting hn = g1
un and h̄n

the logarithmic derivative of hn(x), the asymptotic Fisher information quantity becomes

I(θ) = θ
−2 lim

n→∞∫ (1+xh̄n(x))2 hn(x)dx ∈ (0,+∞). (8)

The case of the asymptotic (un = u ∈ (0,+∞), ∀n ∈N), which corresponds to n equally spaced observations, is quite obvious.
Indeed, in this case, we treat Lévy processes with the appropriate conditions on the densities g1

u(x) for a fixed u, and then,
the scale model (5) becomes a regular i.i.d. one, that is to say I(θ) is finite and non-null. When un → 0, the situation is more
intricate, always because hn degenerates when n→∞. It turns out that even the linear model (5) is falsely simple to handle.
Intuitively, one looks at special Lévy processes Y attracted by stable processes on the sense of (41) below. The price to pay
is to exhibit refined controls on the density of Yt , t > 0. This the object of Section 4. Theorems 4.1 and 4.3 below provide
non-trivial examples of LAN models.
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Far [7] focused on the LAMN property for the model (5) discretized along the scheme iun = i/n, 1 ≤ i ≤ n, when the process
Y of the form Y = W +N, the sum of a standard Brownian motion and an independent compound Poisson process. She obtained
LAMN property under the condition that the Lévy measure ν of N has no diffuse singular part and that if ν is absolutely
continuous, then the model has the LAN property. Our development in Section 5 constitutes a complement to Corollary 3.3
for the scale model (5) and also to Far’s work [7] and illustrates how to build a LAN scale model from an another LAN scale
model.

2 The model and Definition of LAN property

2.1 The model

The sample space is Ω = D(R+,R), the Skorokhod space endowed with its Borel σ -field D and the canonical process
X = (Xt)t≥0.

As a first step, we assume the model (6). Notice that if in (6), cθ = 0, µθ integrates ∣y∣∧1 and µθ (0,+∞) = 0 (respectively
µθ (−∞,0) = 0) then the support of the law of Xt is [dθ t,+∞) (respectively (−∞,dθ t]), with dθ = bθ − ∫R y1l∣y∣≤1 µθ (dy).
Otherwise the law of Xt has a support equal to R. There are many situations in which for all t > 0, Xt has a probability
density gθ

t (x) which is infinitely differentiable in x. It is true if for example cθ > 0 or ∫∣y∣≤ε
min(y2,1)µθ (dy) ≥ Kθ ε

α , for
any ε ∈ [0,1] and for some Kθ > 0 and some α ∈ (0,2). See [18], and for a general account concerning Lévy processes, the
reader is referred to [10] or [19]. As a second step, we restrict our attention to the scale model (5). For simplicity’s sake, it is
easier in this case, to express the probabilities (Pθ )θ∈Θ in the form (5) rather than considering them as solutions of martingale
problems associated with the family of characteristics (bθ ,cθ ,µθ )θ∈Θ because of the intricacy inherent in the truncation
functions, (see [10]). Let (un)n∈N be a sequence of positive numbers. We aim to provide in Section 3 some theoretical results
on models associated with observations, at times iun, of the process X , and to illustrate by some examples. For that, we need
to consider the sequence of i.i.d. random variables and the family of σ -fields:

Xn
j = X( j+1)un −X j un , Gn

i = σ(Xn
j , 0 ≤ j ≤ i−1) . (9)

Denoting Hn = Gn
n and Hn

t = Gn
[nt], t ∈ [0,1], we introduce the sequence of filtered statistical models:

En = (Ω ,Hn, (Hn
t )t∈[0,1], (Pθ )θ∈Θ ). (10)

For any fixed θ0 ∈Θ , we denote

Θn = {θ ∈R ∶ θ0+θ/
√

n ∈Θ}, [θ]n = θ0+θ/
√

n and Pn
θ = P[θ]n ∣H

n, (11)

and we introduce the statistical experiments localized around θ0:

En(θ0) = (Ω ,Hn, (Hn
t )t∈[0,1], (P

n
θ )θ∈Θn

), E ′(θ0) = (Ω
′,F ′, (F ′t )t∈[0,1], (P

′
θ )θ∈R ) , (12)

where the last statistical experiment is a Gaussian Shift. That means, that for all θ ∈ R, P′
θ

is the unique probability on
(Ω

′,F ′) equivalent to
pr′0 on each F ′t and that its associated likelihood process is the geometric Brownian motion defined by:

Z
′
θ

t =
dP′

θ
∣F ′t

dP′
θ0

∣F ′t
= exp{θ

√
I(θ0)X ′

t −
θ

2

2
I(θ0)t }, t ∈ [0,1],

where (X ′
t )t∈[0,1] is a Wiener process and then, under P′

θ
, X ′

t − t θ
√

I(θ0) is again a Wiener process. I(θ0) is the asymptotic
Fisher information quantity, i.e. a positive constant relative to the sequence of statistical experiments En(θ0) given by (12),
that has to determined. As announced in the beginning of this work asymptotic Fisher information quantity is crucial in
estimation procedure since it inverse gives, under the LAN property, the lower bound of the variance of any estimator ϑn of
θ0. More precisely, HAJEK’ convolution theorem [21], says that if ϑn is such that the convergence in law
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Law((
√

n(ϑn−(θ0+n−1/2
θ)) ∣ Pn

θ ))→Lθ0 , asn→∞,

holds, then necessarily Lθ0 is the convolution
Lθ0 =L

1
θ0
∗L2

θ0

and L1
θ0
=Normal(0,I(θ0)−1) et L2

θ0
is a probability measure on R.

2.2 LAN property and weak functional convergence of the likelihood processes

Local asymptotic normality of the sequence of models En in (12) in a value θ0 ∈Θ is actually equivalent to the weak functional
convergence in time of the sequence of statistical experiments En(θ0) to the gaussian shift E(θ0) (12). This fact is explained
as follows: let Z

′
ηξ et Zn,ηξ be the likelihood processes defined, for all η ,ξ ∈Θn and at each time t ∈ [0,1], by

Z
′
ηξ

t =
dP′η ∣F ′t
dP′

ξ
∣F ′t

=EP′
ξ

⎡⎢⎢⎢⎢⎣

dP′η
dP′

ξ

∣F ′t
⎤⎥⎥⎥⎥⎦
= Z

′
η

t

Z
′ξ
t

and Zn,ηξ

t =
dPn

η ∣Hn
t

dPn
ξ
∣Hn

t

=EPn
ξ

⎡⎢⎢⎢⎢⎣

dPn
η

dPn
ξ

∣Hn
t

⎤⎥⎥⎥⎥⎦
, (13)

with the convention a/0 = 0, ∀a ∈ [0,+∞). According to [8], the likelihood processes Zn,ηξ of the statistical experiment
En(θ0) is represented by

Zn,ηξ

t =
[nt]
∏
j=1

gη
un

gξ
un

(Xn
j ). (14)

The notion of weak functional convergence in time was introduced by Lecam [15] and developed by Strasser [21] and Jacod
[9]. It is expressed as follows: for every finite subset J of R = ∪n⩾1Θn , and every ξ ∈Θ , we have

Law( (Zn,ηξ )
η∈J ∣ Pn

[ξ]n
) Ð→ Law( (Z

′
ηξ )

η∈J ∣ P′
ξ
), as n→ +∞. (15)

in the sense of the weak convergence for the Skorohod topology.

3 When does LAN property hold for Lévy models?

Our aim is to give sufficient conditions on gθ
t , the density of Xt under Pθ , in order to obtain the LAN property for the sequence

of filtered statistical models En.

3.1 LAN property for the model (6)

Later on, we may assume the following:

(H0): For all θ ∈Θ and t > 0, under Pθ , the support of the law of Xt is an intervalKt ,

independent from θ , of the form Kt =R or (−∞,d t] or [d t,+∞), for some d ∈R,
and Xt has a probability density x↦ gθ

t (x) which is of class C2, relative to θ .

We denote Kn =Kun and define on the interior of Kn the following functions:

hθ
n = gθ

un , h̄θ
n =

∂

∂θ

loghθ
n , ḧθ

n =
∂

2

∂ 2
θ

hθ
n , iθn = hθ

n ∣ h̄θ
n ∣2 and jθ

n = iθn + ∣ ḧθ
n ∣. (16)

When the number χ > 0 appears, it is always understood that n is big enough so that χ and −χ are in Θn. For all θ ∈Θ , ρ ∈ (0,1)
and ρ

′ = 1−ρ, denote
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Iθ
n ∶= ∫

Kn
iθn (x) dx, Ĩn(χ) = sup

∣ε ∣≤χ

I[ε]n
n , (17)

J̃ρ
n (χ) ∶= sup

∣ζ ∣,∣ε ∣≤χ

∫
Kn

j[ζ]n
n (x) j[ε]n

n (x)

(h[ζ]n
n (x))

ρ

(h[ε]n
n (x))

ρ′ dx = J̃ρ
′

n (χ). (18)

For statisticians, Iθ0
n is a familiar quantity and corresponds to a Fisher Information quantity at stage n. The quantity J̃ρ

n (χ) is
less intuitive. It is a localized quantity around the true value θ0 and corresponds to the rest of Taylor approximations at the
order 1 of Hellinger integrals of the model.

We are now able to state our first result, that is, the LAN property for the model (6).

Theorem 3.1 Assume (H0) and

(H1) ∶ lim
n→+∞

Iθ0
n = I(θ0) ∈ (0,+∞) and for allχ > 0, limsup

n→+∞
Ĩn(χ) < +∞,

(H2) ∶ There exists a ∈ (0,1/2)such that for all χ > 0, one has

lim
n→+∞

J̃ρ
n (χ)

n
= 0 for ρ ∈ {1/2,a,1−a} .

Then, the sequence of sequence of filtered statistical models En (10) corresponding to (6) has the LAN property at θ0 with
speed

√
n and the asymptotic Fisher information quantity I(θ0).

Remark 3.2 Cauchy-Schwarz inequality, gives Iθ
n ≤ [J̃1/2

n (∣θ ∣)]
1/2

, and both (H1) and (H2) are implied by:

(H3) ∶ lim
n→+∞

Iθ0
n = I(θ0) and there exists a ∈ (0,1/2)such that for all χ > 0, one has

limsup
n→+∞

J̃ρ
n (χ) < +∞ for ρ ∈ {1/2,a,1−a}.

Genon-Catalot and Jacod [8] exhibited discretized models according to random sampling schemes (T(i,n), 1 ≤ i ≤ n) asso-
ciated with a diffusion processes X driven by Brownian motions (with coefficients dependent on θ and by an homogeneous
way on X) and proved the LAMN property under conditions similar to (H0), that is differentiability to the third order relative
to θ , and integrability of the densities of the processes. Their proofs have a general vocation in the sense that they only use the
Markovian property of the processes and are based on a method of approximation of the log-likelihood. Because of the intri-
cate form 14 of the likelihood processes, we show the weak functional convergence of En(θ0) to E ′(θ0) via the convergence
of the Hellinger processes, and according to a tool one can find in [9].

Proof (Proof of Theorem 3.1). Fix θ0. The Hellinger process of order ρ ∈ (0,1) between
pr′η and P′

ξ
, relative to (F ′t )t∈[0,1], is deterministic and has the form: H

′
ηξ (ρ)t = ρ (1−ρ)(η − ξ )2 I(θ0)t/2. According

to Theorem 5.3 [9], it is enough to show that the Hellinger processes Hn,ηξ (ρ) between Pn
η and Pn

ξ
, relative to (Gn

t )t∈[0,1],
satisfy the following: there exists a ∈ (0,1/2) such that for every ∀η ,ξ ∈R, ρ ∈ {1/2,a,1−a} and t ∈ [0,1], the convergence
in law

Hn,ηξ (ρ)t

Pn
ξÐ→ H

′
ηξ (ρ)t , as n→∞ . (19)

holds. We will use this method, because in our framework the processes Hn,ηξ are also deterministic and have the following
quite simple form one can find in [8]: [nt] being the integer part of nt, we have

Hn,ηξ (ρ)t = [nt] (1−∫
Kn

(h[η]n
n )

ρ

(h[ξ]n
n )

1−ρ

(y)dy) . (20)

1) For ρ ∈ (0,1), ρ
′ = 1−ρ take Φρ(u,v) = ρu+ρ

′v−uρ vρ
′
, u,v ≥ 0 and observe that

Hn,ηξ (ρ)1 = ∫Kn
Φρ (h[η]n

n , h[ξ]n
n )(y)dy .

According to (19) and (20), it is enough to show that ∀η ,ξ ∈R and ρ ∈ {1/2,a,1−a}, we have
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lim
n→+∞

n∫
Kn

Φρ (h[η]n
n , h[ξ]n

n )(y)dy = ρ ρ
′

2
(η −ξ)2 I(θ0) . (21)

2) Assume (H0), (H1), and (H2) for a fixed a ∈ (0,1/2) . Applying Taylor expansion at the first order of θ ↦ (hθ
n )ρ for η ∈R

and n big enough, we get for η ∈Θn, the representation of (h[η]n
n )

ρ

on Kn:

(h[η]n
n )

ρ

= (hθ0
n )

ρ

+ ρ η√
n

kθ0,ρ
n + ρ η√

n
V η ,ρ

n , (22)

where for all θ ∈Θ , the functions:

kθ ,ρ
n = h̄θ

n (hθ
n )

ρ

, k̇θ ,ρ
n = (hθ

n )
ρ

[ ∂

∂θ
h̄θ

n + ρ (h̄θ
n )

2
] = (hθ

n )
ρ

[ ḧθ
n

hθ
n
− ρ

′ (h̄θ
n )

2
] , (23)

V η ,ρ
n = ∫

1

0
[k[η r]n,ρ

n −kθ0,ρ
n ] dr = η√

n ∫
1

0
(1− r) k̇[η r]n,ρ

n dr . (24)

are defined on the interior of Kn. Also, observe that:

kθ ,ρ
n (hθ

n )
ρ
′
= kθ ,ρ′

n (hθ
n )

ρ

= kθ ,1
n , kθ ,ρ

n kθ ,ρ′
n = iθn and k̇θ ,ρ

n (hθ
n )

ρ
′
= k̇θ ,1

n −ρ
′ iθn . (25)

Because of (24) and (25), one has

V η ,1
n −(hθ0

n )
ρ
′
V η ,ρ

n = η√
n ∫

1

0
(1− r)[k̇[ηr]n,1

n −(hθ0
n )

ρ
′
k̇[ηr]n,ρ

n ]dr

= η√
n ∫

1

0
(1− r) k̇[η r]n,ρ

n [(h[ηr]n
n )

ρ
′
−(hθ0

n )
ρ
′
]dr+ ηρ

′
√

n ∫
1

0
(1− r)i[η r]n

n dr.

Using (22), finally write

V η ,1
n −(hθ0

n )
ρ
′
V η ,ρ

n = η
2
ρ
′

n ∫
1

0
(1− r) k̇[ηr]n,ρ

n [kθ0,ρ
′

n +V ηr,ρ′
n ]dr+ ηρ

′
√

n ∫
1

0
(1− r) i[ηr]n

n dr. (26)

3) Write for all η ,ξ ∈R and n big enough so that η ,ξ ∈Θn:

Φρ (h[η]n
n , h[ξ]n

n ) = ρ [hθ0
n + η√

n
kθ0,1

n + η√
n

V η ,1
n ]+ρ

′ [hθ0
n + ξ√

n
kθ0,1

n + ξ√
n

V ξ ,1
n ]

−[(hθ0
n )

ρ

+ ρ η√
n

kθ0,ρ
n + ρ η√

n
V η ,ρ

n ][(hθ0
n )

ρ
′
+ ρ

′
ξ√
n

kθ0,ρ
′

n + ρ
′
ξ√
n

V ξ ,ρ′
n ] .

and (25) yields

nΦρ (h[η]n
n , h[ξ]n

n ) =
√

nρ η [V η ,1
n − (hθ0

n )
ρ
′
V η ,ρ

n ]+
√

nρ
′
ξ [V ξ ,1

n − (hθ0
n )

ρ

V η ,ρ′
n ]

−ρ ρ
′
η ξ [ iθ0

n +V η ,ρ
n V ξ ,ρ′

n +kθ0,ρ
n V ξ ,ρ′

n +kθ0,ρ
′

n V η ,ρ
n ] .

According to (26)we have nΦρ (h[η]n
n , h[ξ]n

n ) = ρ ρ
′ [Aη ,ξ

n +Bη ,ξ
n ] , where

Aη ,ξ
n = η

2 ∫
1

0
(1− r) i[η r]n

n dr+ξ
2 ∫

1

0
(1− r) i[ξ r]n

n dr − η ξ iθ0
n ,

Bη ,ξ
n = η

3
√

n ∫
1

0
(1− r) k̇[η r]n,ρ

n [kθ0,ρ
′

n +V η r,ρ′
n ] dr+ ξ

3
√

n ∫
1

0
(1− r) k̇[ξ r]n,ρ

′
n [kθ0,ρ

n +V ξ r,ρ
n ] dr

−η ξ [kθ0,ρ
n V ξ ,ρ′

n + kθ0,ρ
′

n V η ,ρ
n +V η ,ρ

n V ξ ,ρ′
n ] . (27)

4) a) We are now able to prove that for all η , ξ ∈R,
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lim
n→+∞∫Kn

Aη ,ξ
n (x)dx = 1

2
(η −ξ)2 I(θ0) , (28)

lim
n→+∞∫Kn

Bη ,ξ
n (x)dx = 0 , (29)

which gives (21).
4) b) Fix η , ξ ∈R and take χ = ∣η ∣∨ ∣ξ ∣.To prove (28), we use both (16)), (23) and for all ρ ∈ (0,1) and θ ∈Θ , we have the
representation and the control

∣kθ ,ρ
n ∣ =

√
iθn (hθ

n )
ρ−1/2

and ∣k̇θ ,ρ
n ∣ ≤ jθ

n

(hθ
n )

ρ′ . (30)

Since r ∈ [0,1], then (16), (23) and Taylor expansion at the first order of θ ↦ (kθ ,1/2
n )

2
, yield

I[ηr]n
n − Iθ0

n = ∫
Kn
[k[ηr]n,1/2

n (x)
2
−kθ0,1/2

n (x)
2
]dx = 2ηr√

n ∫ ∫
1

0
k[ηrs]n,1/2

n (x)k̇[ηrs]n,1/2
n (x)dsdx.

If we express (30) with ρ = 1/2, then Cauchy-Schwarz inequality, (H1) and then (H2) give:

sup
r∈[0,1]

∣I[η r]n
n − Iθ0

n ∣ ≤ 2 ∣η ∣ Ĩn(χ)
⎛
⎝

J̃1/2
n (χ)

n
⎞
⎠

1/2

Ð→ 0 as n→ +∞ . (31)

Now, we can write

∫
Kn

Aη ,ξ
n (x)dx = η

2 ∫
1

0
(1− r)I[η r]n

n dr + ξ
2 ∫

1

0
(1− r)I[ξ r]n

n dr − η ξ Iθ0
n

= η
2 ∫

1

0
(1− r)(I[η r]n

n − Iθ0
n )dr+ξ

2 ∫
1

0
(1− r)(I[ξ r]n

n − Iθ0
n )dr+ 1

2
(η

2+ξ
2−2η ξ)Iθ0

n ,

and it is clear that (31) yields (28).
4) c) To prove (29), we use arguments similar to 4) b), that is Taylor expansion at the first order of θ ↦ kθ ,1/2

n , and we use the
representation

k̇[η r]n,ρ
n kθ0,ρ

′
n = k̇[η r]n,ρ

n k[η r]n,ρ
′

n − η r√
n ∫

1

0
k̇[η r]n,ρ

n k̇[η r s]n,ρ
′

n ds, ρ ∈ (0,1), r ∈ [0,1] .

By (30) and Cauchy-Schwarz inequality, we have for all r ∈ [0,1],

∫
Kn

∣k̇[η r]n,ρ
n (x)kθ0,ρ

′
n (x)∣dx ≤ ∫

Kn

√
i[η r]n
n (x) j[η r]n

n (x)
√

h[η r]n
n (x)

dx+ ∣η ∣r√
n

J̃ρ
n (χ) .

This implies
sup

r∈[0,1]
∫
Kn

∣k̇[ηr]n,ρ
n (x)kθ0,ρ

′
n (x)∣dx ≤ (Ĩn(χ)J̃1/2

n (χ))1/2+ χ√
n

J̃ρ
n (χ) ∶= δ

ρ
n (χ) = δ

ρ
′

n (χ). (32)

Because of (30), we also have

∫
Kn

∣k̇[η r]n,ρ
n (x)V η r,ρ′

n (x)∣dx ≤ ∣η ∣r√
n ∫

1

0
(1− s)∫

Kn
∣k̇[η r]n,ρ

n (x) k̇[η r s]n,ρ
′

n (x)∣dxds.

Then, reproducing the method we used for (32), we get

sup
r∈[0,1]

∫
Kn

∣k̇[η r]n,ρ
n (x)V η r,ρ′

n (x)∣dx ≤ δ
ρ
n (χ). (33)

According to (24) and (32), we also have

∫
Kn

∣kθ0,ρ
n (x)V η ,ρ′

n (x)∣dx ≤ ∣η ∣√
n ∫

1

0
(1− r)∫

Kn
∣k̇[η r]n,ρ

′
n (x)kθ0,ρ

n (x)∣dxdr ≤ χ√
n

δ
ρ
′

n (χ). (34)
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Further, (24), (30) and Cauchy-Schwarz inequality give

∫
Kn
∣V η ,ρ

n (x)V ξ ,ρ′
n (x)∣dx ≤ ∣η ξ ∣

n ∫
1

0
∫

1

0
(1− r)(1− s)∫

j[η r]n
n (x) j[ξ s]n

n (x)

h[η r]n
n (x)

ρ′
h[ξ s]n

n (x)
ρ

dxdsdr ≤ ∣χ ∣√
n

δ
ρ
′

n (χ). (35)

Finally, according to (27), (32), (33), (34) and (35), we obtain that

∫
Kn

Bη ,ξ
n (x)dx ≤ 7χ

3 δ
ρ
n (χ)√

n
= 7χ

3

⎡⎢⎢⎢⎢⎢⎣

⎛
⎝

Ĩn(χ) J̃1/2
n (χ)

n
⎞
⎠

1/2

+χ
J̃ρ

n (χ)
n

⎤⎥⎥⎥⎥⎥⎦
,

and we conclude with the fact that assumptions (H1) and (H2) imply (29).

3.2 LAN property for the scale model (5)

As a consequence of Theorem 3.1, we obtain a result for the scale model (5) based on the equivalence between the following
assertions:

● Xt has a density g1
t (.) under P1, ∀t > 0;

● Xt has the density gθ
t (.) =

1
θ

g1
t ( .

θ
) under Pθ , ∀θ ∈Θ , t > 0.

The functions hn, h′n, and h′′n denote respectively h1
n the probability density of Xun under P1, the first and the second derivatives

of x↦ hn(x). Notice that for all θ ∈Θ and n ∈N∗, if x ∈Kn = Support(hθ
n ), then hθ

n (x) = hn(x/θ)/θ and Kn = θKn = {θ x, x ∈
Kn} . Therefore, if we want (H0) to be satisfied, we need K =Kn =R or R+ or R−, and then, for all x ∈K:

iθn (x) = 1
θ 3 in(x/θ) and jθ

n (x) = 1
θ 3 jn(x/θ),

where the functions in = i1n and jn = j1
n are defined by

in(x) = ∣1+x
h′n
hn

(x)∣2 hn(x) and jn(x) = in(x)+ ∣2+4x
h′n
hn

(x)+x2 h′′n
hn

(x)∣hn(x). (36)

After a change of variables, the quantities Iθ
n and Ĩn(χ) defined in (17) satisfy

Iθ
n = 1

θ 2 ∫K
in(x)dx = In

θ 2 and Ĩn(χ) = sup
∣ζ ∣≤χ

In

([ζ ]n)2 ≤ In

(∣θ0∣−χ/
√

n)2 . (37)

For ρ ∈ (0,1), denote

Jn(ρ) = ∫
K

jn(x)2

hn(x)2ρ
dx .

Using Cauchy-Schwarz inequality and again a change of variables, on has: for all χ > 0, the quantity J̃ρ
n (χ) defined in (18),

satisfies

J̃ρ
n (χ) ≤ sup

∣ζ ∣,∣ξ ∣≤χ

⎡⎢⎢⎢⎢⎢⎣
∫

K

j[ζ]n
n (x)

2

h[ζ]n
n (x)

2ρ
dx

⎤⎥⎥⎥⎥⎥⎦

1/2 ⎡⎢⎢⎢⎢⎢⎣
∫

K

j[ε]n
n (x)

2

h[ε]n
n (x)

2ρ′ dx

⎤⎥⎥⎥⎥⎥⎦

1/2

= sup
∣ζ ∣,∣ε ∣≤χ

⎡⎢⎢⎢⎣

1

∣[ζ ]n∣5−2ρ ∣[ε]n∣5−2ρ ∫K

jn(x)2

hn(x)2ρ
dx ∫

K

jn(x)2

hn(x)2ρ′ dx
⎤⎥⎥⎥⎦

1/2

≤ ∣ ∣θ0∣−
χ√
n
∣
4ρ−10

[ Jn(ρ) Jn(ρ
′)]1/2 . (38)
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Corollary 3.3 For the scale model (5), the sequence of statistical models En has the LAN property with speed
√

n at each
θ ∈Θ if the following conditions are satisfied:

(C0) ∶ Under P1, the support K of the law of X1 is eitherR orR+ orR− and for all

t > 0, Xt has a probability density x↦ g1
t (x) of class C2 on the interior of K

(C1) ∶ The sequence In = ∫
K

in(x)dx, satisfies lim
n→+∞

In = I ∈ (0,+∞)

(C2) ∶ There exists a ∈ (0,1/2) such that lim
n→+∞

1
n

Jn(ρ) = 0 for ρ ∈ {1/2,a,1−a}.

In this case, the asymptotic Fisher information quantity is I(θ) = I/θ 2.

Proof. It is immediate that (C0) implies (H0). Representation (37) shows that (C1) implies (H1) and (38) shows that (C2)
implies (H2).

Remark 3.4 The effect of the discretization path un is hidden in the assumptions (C1) and (C2). Recall that the density hn is
the density of Xun . We anticipate a little (on Theorem 4.1 below) by saying that in some favorable cases (scaling property of
stable processes), the path un has a quite negligible effect. In general, the LAN property depends strongly on the limit of un
when n goes to infinity.

4 Example: LAN property for scale models associated to Lévy processes attracted by stable
processes.

In this Section, we provide examples of Lévy processes X satisfying Corollary 3.3 which treats the scale model (5), i.e.
X = θY . and where the LAN property was obtained under regularity and integrability conditions on the probability densities
of Yt , t > 0. Usually, these densities, if they exist, are not explicit. For this reason, we focus on processes Y which belong to
the domain of attraction of stable processes. We recall that a stable process Sα,β ,γ,δ is a Lévy process, characterized in [22]
by its Lévy exponent given, for all t > 0, u ∈R, by

ϕ(u) = 1
t

logE[eiuSα,β ,γ,δ
t ] =

⎧⎪⎪⎨⎪⎪⎩

iδ u− γ ∣u∣α exp(−i π

2 β K(α)sgn(u)), if α ≠ 1,
iδ u− γ ∣u∣ (1+ i 2β

π
sgn(u) log ∣u∣) , if α = 1. (39)

where α ∈ (0,2] is the stability coefficient, β ∈ [−1,1] is the skewness coefficient, γ > 0 is the scale coefficient, the real number
δ is the drift and K(α) = α −1+ sgn(1−α) . When α ∈ (0,1) and δ ≥ 0, the process Sα,1,γ,δ is a subordinator, i.e. a positive
increasing Lévy process and for all t > 0, the law of Sα,1,γ,δ

t has a support equal to [δ t,∞). In all the cases, for all t > 0,
the r.v. Sα,β ,γ,δ

t has an infinitely differentiable probability density Gα,β ,γ,δ
t which is explicit only for particular values of the

coefficients (α,β) = (1/2,1), (1,0), (2,0), corresponding respectively to the processes: First passage times of the Brownian
Motion, Cauchy Process and Brownian Motion. Otherwise, it is expressed only via the inverse Fourier transform of expϕ(u).
The scaling property for stable processes reads as follows:

Sα,β ,γ,δ
t

d= δt,α +(γ t)−1/α Sα,β ,1,0
1 , where δt,α = t [δ + 2β

π
γ log(γ t)1lα=1] . (40)

As announced if the introduction, we focus here on the case where the Lévy processes Y satisfies the following: there exist
measurable functions b(t) ∈R, a(t) > 0 and a non-degenerate law ν such that the following convergence in distribution holds:

Ŷt =
Yt −b(t)

a(t)
dÐ→ ν , as t → 0 or +∞. (41)

A known result, see Bertoin and Doney [5] for t → 0, says that the process Y is attracted by a stable law. More precisely, if
(41) holds, then necessarily

• b(t) = bt, a(t) = t1/α l(t), where b ∈R, α ∈ (0,2] and l(t) is a slowly varying function, i.e. l(λ t)/l(t)→ 1, ∀λ > 0;
• ν is the law of Sα,β ,γ,0

1 for some β ∈ [−1,1], γ > 0
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• Ŷt , t > 0, admits an infinitely differentiable probability density Gt such that: for all k ∈N, and t → 0 or +∞:

(Gt)(k) (x)→G(k)(x), uniformly in x ∈ Support(G), (42)

where G is the density of Sα,β ,1,0
1 .

The convergence (41) can be entirely expressed with the behavior of the tail of the Lévy measure of Y (case α < 2) or by
existence or a Brownian component in Y (case α = 2, l(t) constant). Observe that hn, the probability density function of Yun is
expressed by h(x) = Gun(a(un)(1)(x−b(un))). As for hn in (8), if Ḡun (respectively Ḡ) denotes the derivative of x↦ logGun

(respectively logG), then the corresponding asymptotic Fisher information quantity which is the limit in (37), becomes after
the change of variable x↦ a(un)x+b(un),

I(θ) = θ
−2 lim

n→∞∫ [1+(x+ b(un)
a(un)

) Ḡun(x)]
2

Gun(x)dx.

Of course, the convergence (42) is not sufficient to ensure that I(θ) is in (0,+∞), but at least it ensures that if it is true, then
necessarily l = limn→∞b(un)/a(un) ∈R and

I(θ) = I
θ 2 with I = ∫ [1+(x+ l)Ḡ(x)]2

G(x)dx ∈ (0,+∞) (43)

Actually, what one expects is to have more than (42). An additional control of the type limsup∣x∣→+∞,n→+∞ ∣xḠun(x)∣ < +∞
would be sufficient to prove that I(θ)= I/θ 2. Unfortunately, here also, there is a lack in the literature concerning such controls.
We will see that to all stable processes, with eventually conditions on the drifts, and we illustrate by the non-trivial case of
the sum of independent stable processes or time changed stable processes. The proofs of these examples are mainly based on
tools developed in [11] and [12] giving examples of controls, of Lévy densities Gt(x), in the space variable x, and uniformly
in small or big time t. Our aim is, according to the asymptotic (un)n∈N∗ , to study the LAN property with different paths un
for processes of type

Y =
N

∑
i=k

Sak,bk,ck,dk or Y = Sα,β ,1,0 ○Z, (44)

where the coefficients (ak,bk,ck,dk) vary in a setDN , the processes Sak,bk,ck,dk are independent and Sα,β ,1 is independent from
Z which is contained in a special class of subordinators attracted by stable subordinators. For example Z could be the sum of
a stable subordinator and a Poisson process. Notice that in the situation (44), we loose the scaling property (40). Nevertheless,
the processes Y belongs to the class (41). In the first situation, in case of pairwise distinct stability coefficients, we have the
following property, which we call asymptotic scaling: if i∧ = Argmin{αi, 1 ≤ i ≤ N} and i∨ = Argmax{αi, 1 ≤ i ≤ N}, then
the following convergence in distribution hold:

(γi0 t)−1/ai0 (Yt −
N

∑
k=1

δt,ak) Ð→ S
ai0 ,bi0 ,1,0
1 , (45)

i0 = i∨ (respectively i∧), when t → 0 (respectively when t → +∞). We will see in Subsection 4.2 how much is this property
useful for the path un→ 0 (respectively un→+∞). For the second situation we treat subordinators such that for some 0 < ε < 1
and some speed rt (deterministic), this convergence in distribution holds: Zt/rt → Sε,1,1,0

1 when t → 0 (respectively ∞). In fact
rt is necessarily regularly varying of order 1/ε at 0 (respectively ∞), recall it means rt = t1/ε l(t) and l is slowly varying, i.e.
l(λ t)/l(t)→ 1, ∀λ > 0. In this situation, there exist β ∈ (−1,1), γ

′ > 0 such that

Yt

r1/α

t

Ð→ Sε α,β ′,γ′,0
1 , (46)

4.1 Scale models associated with stable processes have the LAN property

The first application of Corollary 3.3:
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Theorem 4.1 For the scale model (5), assume Y = Sα,β ,γ,δ is a stable process such that δ = 0 is null if α < 1 and ∣β ∣ = 1 and
G the density of Sα,β ,1,0

1 . Let (un)n∈N∗ be any sequence such that ln = (γ un)−1/α
δun,α → l ∈R, where δt,α is defined in (40),

and such that one of the following holds:

(i) un→ L ∈ (0,+∞);
(ii) un→ L = 0, ∃R > 0 s.t. nR un→ +∞;

(iii) un→ L = +∞, ∃S > 0 s.t. n−S un→ 0 .

Then, the sequence of sequence of filtered statistical scale models En (10) have the LAN property with speed
√

n at each θ ∈Θ

and the asymptotic Fisher information quantity is given by

I(θ) = θ
−2 [∫ (y+ l)2 G′(y)2

G(y)
dy−1] .

Remark 4.2 If α ∈ (0,1), then support of the law of Sα,β ,γ,δ
1 is [δ ,+∞) (respectively (−∞,δ ]) if β = 1 (respectively β = −1),

otherwise the support is whole R. The assumption δ = 0 ensures that the support of the law of Sα,β ,γ,δ
1 satisfies the condition

(C0) of Corollary 3.3. In [12], we described in depth the behavior of the density Gα,β ,γ,δ
t of Sα,β ,γ,δ

t and considerations like
support, asymptotic behavior in x uniformly in t,β ,γ,δ are given. There,all the tools needed to treat any asymptotic with
discretization path un are available. The cases nun → 0 and un → +∞ are statistically not very realistic, nevertheless, they
are treated since proofs cost more than the case un→ 0. The most interesting cases are:

1. un = u ∈ (0,+∞). Necessarily, L = u and the assumptions of Theorem 4.1 are then immediately satisfied. This is an
essentially trivial result because we treat then a regular i.i.d. model.

2. un = u/n, u ∈ (0,+∞). Necessarily, L = 0 and the assumptions of Theorem 4.1 are satisfied if and only if one of the
following holds:

(i) α < 1, δ = 0 and then l = 0;
(ii) α = 1, β = 0 and then ll = δ/γ;

(iii) α > 1 and then ll = 0.

Proof (Proof of Theorem 4.1). 1) a) Let hn be the C∞ density of Sα,β ,γ,δ
un . The scaling property (40) reads on hn and its

derivatives as follows: for all k ∈N and x ∈ Support(hn),

(hn)(k)(x) = (γ un)−(k+1)/α (Gα,β ,1,0
1 )

(k)
((γ un)−1/α (x−δun,α)) , (47)

where

Support(hn) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

R+ if 0 < α < 1, β = 1,
R− if 0 < α < 1, β = −1,
R otherwise.

(48)

1) b) In [11] and [12], we provided several properties of the density G = Gα,β ,1,0
1 . For instance, there exist A, B,C, D > 0,

constants depending explicitly on α, β , such that with functions

χ(x) ∶= D
∣x ∣α+1 , ξ(x) ∶= B ∣x ∣(2−α)/2(α−1) e−A ∣x∣α/(α−1)

, η(x) =C exp(−eπ ∣x∣/2+π ∣x∣/4),

we have
G(x) 0+∼ (respectively 0−∼ ) ξ(x), if β = 1 (respectively −1) and 0 < α < 1

+∞∼ (respectively −∞∼ ) χ(x), if β ≠ −1(respectively 1) and 0 < α < 2
+∞∼ (respectively −∞∼ ) η(x), if β = −1(respectively 1) and α = 1
+∞∼ (respectively −∞∼ ) ξ(x), if β = −1(respectively 1) and 1 < α ≤ 2.

where G(x) l∼H(x) means limx→l G(x)/H(x) = 1. Further, with the convention 0/0 = 0, the functions

Fk(x) ∶= ∣G(k)(x)/G(x)∣,k ∈N
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are continuous on the support defined in (48) and there exist a, b, c > 0, constants depending explicitly on α and β and k, such
that

Fk(x) 0+∼ (respectively 0−∼ ) a ∣x∣k/(α−1), if β = 1 (respectively −1) and 0 < α < 1
+∞∼ (respectively −∞∼ ) b∣x∣−k, if β ≠ −1(respectively 1) and 0 < α < 2
+∞∼ (respectively −∞∼ ) c exp(kπ ∣x∣/2), if β = −1(respectively 1) and α = 1
+∞∼ (respectively −∞∼ ) a ∣x∣k/(α−1), if β = −1(respectively 1) and 1 < α ≤ 2,

Last equivalences, imply that for any nonnegative integer s, we have

0 ≤ r ≤ k Ô⇒ lim
∣x∣→+∞

∣x∣2(1−ρ)(1+α) (∣x∣r Fk)s (G)2(1−ρ) ∈ [0.+∞) (49)

and because 0 < ρ < 1−1/(2(1+α))⇔ 2(1−ρ)(1+α) > 1, we have

0 ≤ r ≤ k, 0 < ρ < 1− 1
2(α +1)

Ô⇒ x↦ (∣x∣r Fk(x))s G(x)2(1−ρ) ∈ L1(dx) . (50)

2) We need to verify the assumptions of Corollary 3.3, i.e. to check (C1): as n→∞,

In = ∫ [1+x
h′n
hn

(x)]2 hn(x)dxÐ→ I = ∫ (y+ l)2 (G′)2

G
(y)dy −1 ∈ (0,+∞) (51)

and (C2), that is to say: there exists a ∈ (0,1/2), such that for ρ ∈ {1/2,a,1−a}, one has

1
n

Jn(ρ) = 1
n ∫

( jn)2

(hn)2ρ
(x)dxÐ→ 0, (52)

jn(x) =
⎡⎢⎢⎢⎢⎣
∣1+x

h′n
hn

(x)∣
2

+ ∣2+4x
h′n
hn

(x)+x2 h′′n
hn

(x)∣
⎤⎥⎥⎥⎥⎦

hn(x). (53)

3) The scaling property (47) and the corresponding change of variables give the following representation of the quantity In in
(51):

In = ∫ [1+(y+ ln)
G′(y)
G(y)

]2 G(y)dy .

Because ln→ l ∈R and thanks to (49), we obtain

x↦ sup
n∈N

[1+(y+ ln)
G′

G
(y)]

2
G(y) ∈ L1 (dy) lim

n→∞
In = ∫ [1+(y+ l)G′

G
(y)]2 G(y)dy.

Developing last expression, integrating by parts and using the fact that G(y) and yG(y) both tend to 0 as y goes to each
endpoint of the support (48), we recover (51).
4) Again, by the change of variables corresponding to (47), and by the representation (53), one has

Jn(ρ) = (γ un)(2ρ−1)/α ∫
⎡⎢⎢⎢⎢⎣
∣1+(y+ ln)

G′

G
(y)∣

2

+ ∣2+4(y+ ln)
G′

G
(y)+(y+ ln)2 G′′

G
(y)∣

⎤⎥⎥⎥⎥⎦

2

G(y)2(1−ρ)dy.

Thanks to (50) and that ln→ l ∈R, it is clear that if ρ ∈ (0,1−1/2(α +1)), then

y↦ sup
n∈N

⎡⎢⎢⎢⎢⎣
∣1+(y+ ln)

G′

G
(y)∣

2

+ ∣2+4(y+ ln)
G′

G
(y)+(y+ l2

n
G′′

G
(y)∣

⎤⎥⎥⎥⎥⎦

2

G(y)2(1−ρ) ∈ L1(dy).

Denote ε = 1/2−1/(2(α +1)). In order to prove the convergence (52), it is enough to have

ρ ∈ (0,ε +1/2) (54)

and
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lim
n→+∞

un
(2ρ−1)/α

n
= 0 . (55)

5) Now, we distinguish between the values of L = limn→+∞ un .
5) a) L = 0 ∶ (55) is always true if ρ ≥ 1/2. By assumptions 1/un ≤ nR, if n is big enough. We deduce that if ρ < 1/2, we
have (55) as soon as R(1−2ρ)/α < 1 which is equivalent to ρ > 1/2−α/(2R). We only have to choose ε

′ = ε ∧α/(4R) and
a = 1/2−ε

′, to get (54) and (55) for ρ ∈ {1/2,a,1−a}.
5) b) L ∈ (0,+∞): (55) is always true.
5) c) L = +∞ ∶ (55) is always true if ρ ≤ 1/2. By the same way than 5) a), un ≤ nS if n is big enough. We deduce that

if ρ > 1/2, we have (55) as soon as S(2ρ − 1)/α < 1 which is equivalent to ρ < 1/2+α/(2S). We only have to choose
ε
′′ = ε ∧α/(4S) and a = 1/2−ε

′′, to get (54) and (55) for ρ ∈ {1/2,a,1−a}.

4.2 Scale models associated with the sum of independent stables processes has the LAN property

This sub-section gives a second example which also generalizes the previous one and achieves the situation (41). Define
K̄(α) = 1 if α ≤ 1 and K̄(α) = (α −2)/α and assume the following restrictions on the skewness parameters:

(Sa,b) ∶ We have N independent processes Sak,bk,ck,0, such that

(a) a1 < a2 <⋯ < aN < 2 and D =
N
⋂
k=1

[ak , 2/(1+ ∣bk K̄(ak)∣)] ≠∅

(b) bk = 0 if ak = 1 and B =max{∣bk K̄(ak)/K̄(aN)∣, 1 ≤ k ≤N } < 1.

Let Y =∑N
k=1 Sak,bk,ck,0 and Y i the processes defined by:

Y i
t =

Yt

t1/ai
, i = 1 or i =N and t > 0. (56)

The processes Y i satisfy the asymptotic scaling property of the situation (45). Denote by Ht the density of Yt

Ht =Ga1,b1,c1,0
t ⋆⋯⋆GaN ,bN ,cN ,0

t . (57)

and by Hi,t the one of Y i
t . Then, hn =Hun satisfies

(hn)(k)(x) = (un ci)−(k+1)/αi (Hi,un)
(k) ((un ci)−1/ai x) . (58)

In [11],[12], we showed that the following function H0 and H∞ have a meaning if defined by

HL ∶= { limt→+∞H1,t(x) =Ga1,b1,1,0
1 (x) if L = +∞

limt→0+HN,t(x) =GaN ,bN ,1,0
1 (x) if L = 0

(59)

the convergence still hold for the successive derivatives, and what is more, uniformly in x ∈ Support(Gai,bi,1,0
1 ). As one can

guess, we are going to make the most of the identity (58) and have the theorem:

Theorem 4.3 Let (un)n∈N∗ be a sequence satisfying one of the following:

(i) un→ L ∈ (0,+∞)
(ii) un→ L = 0, ∃R > 0 s.t. nR un→ +∞
(iii) un→ L = +∞, ∃S > 0 s.t. n−S un→ 0 .

For the scale model (5) with Y =∑N
k=1 Sak,bk,ck,0, assume (Sa,b). Then, the sequence of filtered statistical scale models En (10)

have the LAN property with speed
√

n at each value θ ∈Θ and the asymptotic Fisher information quantity I(θ0) is IL/θ 2, and
with the function HL defined in (57) and (59), depending on the value of L, we have

IL = ∫ y2 (H′
L)2(y)

HL(y)
dy−1 .
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Remark 4.4 Let us briefly explain the nature of the previous assumption. In [12], conditions of type (Sa,b) allowed to show
that Y i

t is distributed as an α-stable variable mixed on the skewness and scale parameters by other processes. More precisely,
for all t > 0, we have these identities in distribution: for all α in the interior of D and t > 0, there exist a r.v. βt and γ

i
t such

that
Y i

t
d= Sα,βt ,γ

i
t ,0

1
d= (γ

i
t )1/α Sα,βt ,1,0

1 . (60)

The processes β and γ
i are such that

∣βt ∣ ≤ B and C t−α/ai Zt ≤ γ
i
t ≤D t−α/ai Zt , (61)

where Zt =∑n
k=1 Sak/α,1,1,0

t is a sum of independent standard stable subordinators and the non-negative numbers C ≤D depend
only on (α,a1,b1,c1,⋯,aN ,bN ,cN). In the case bk K̄(ak) constant for all k = 1,⋯N, then βt = b1 K̄(a1) and γ

i
t is distributed

as a normalized sum of independent stable subordinators. Moreover, they satisfy the following converges in distribution

(βt , γ
i
t )→ (bi K̄(ai)/K̄(α) , Sai/α,1,1,0

1 ) , if i = 1 and t → +∞, or if i =N and t → 0.

Furthermore, notice that the assumption (Sa,b) is satisfied in the symmetrical cases

b1 =⋯ = bN = 0 and then βt = 0 .

In general when β , γ, δ are r.v.’s lying in the set of admissible parameters and F is the σ -field generated by them, we gave in
[12] a structure of F-conditional Lévy process to (Sα,β ,γ,δ

r )r≥0. See also [10] for the notion of F-conditional Lévy process.
If β is deterministic Sα,β ,γ,0

1 is simply distributed as γ
1/α Sα,β ,1,0

1 and with our construction, we allow the same identity even
if β is random and correlated with γ . We also considered in [12] the densities of some families of mixed stable variables
(Sα,βt ,γt ,0

1 )t∈T and gave several examples when these densities and their derivatives behave like the proper stable densities
and this uniformly in t ∈ T .
In fact, it is also possible to state a version of the Theorem 4.3 with stable processes with drifts. It is enough to strengthen
the conditions on the asymptotic as done in Theorem 4.1.We consider that Theorem 4.3 is far from being exhaustive. It is
produced in the aim of illustrating the difficulty of this case. If one wants to reduce the assumption (Sa,b) on the coefficients,
some more controls on the densities are needed.

Before tackling the proof of the Theorem 4.3, we need tour following result borrowed from [12]:

Theorem 4.5 (Controls of the densities of some mixed stable variables (Sα,βr ,γr ,0
1 )r∈R)

Let (γr)r≥0 a pure jump subordinator, i.e.

E[e−λ γ1] = exp∫
0,∞

(e−λx−1)ν(dx), λ ≥ 0.

Assume ν(x) = ν(x,∞) = x−a L(x), with 0 < a < 1 and L a slowly varying function. For all t, x > 0, define

vr ∶= sup{t > 0 ∶ ν(t) > 1/r}, νr(x) ∶= sν(xvr,∞) and γ̄r ∶=
γr

vr
. (62)

a) When L is slowly varying at infinity and r→∞ or L is slowly varying at zero then

νr(x)Ð→ 1
xa , x > 0, and γ̄r

dÐ→ Sa,1,Γ (1−a)/a,0
1 , as r→ 0+ . (63)

b) Moreover assume that there exist 0 < c ≤ a ≤ d < 1 and K ≥ 1 such that

(y/x)a−c ≤ L(y)/L(x) ≤K(y/x)a−d , 0 < y < x . (64)

Let R′ >R> 0 and (γ
p
r )t∈Rp denote one of these families: R1 =R4 = [0,R], R2 = [R,R′], R3 = [R,∞) and γ

1
r = γ

2
r = γr, γ

3
r = γ̄r with

L slowly varying at ∞, γ
4
r = γ̄r with L slowly varying at 0. Let α ∈ (0,2) and (βr)r≥0 any family of r.v. such that supr≥0 ∣βr ∣ ≤B,

for some B ∈ [0,1), (B = 0, if α = 1). Then the densities Gp
r of the mixed stable variables Sα,βr ,γ

p
r

1 are infinitely differentiable
and satisfy, for all k ∈N and all p:
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0< liminf
∣x∣→∞

inf
r∈Rp

∣x∣1+α dGp
r (x), limsup

∣x∣→∞
sup
r∈Rp

∣x∣1+α cGp
r (x)<∞ , (65)

limsup
∣x∣→∞

sup
r∈Rp,x∈R

∣xk(Gp
r )(k)(x)∣

Gp
r (x)

<∞ , (66)

and for all X > 0, p ≠ 1,
sup

r∈Rp,x∈R
∣(Gp

r )(k)(x)∣ <∞ and inf
r∈Rp

inf
∣x∣≤X

Gp
r (x) > 0 . (67)

c) If (γ
′
r)r≥0 is a family of r.v.’s such that γr/K ≤ γ

′
r ≤ Kγr for some K > 1 and all r ≥ 0, then the controls (65-66-67) still be

true for the densities obtained by replacing γr, γ̄r by γ
′
r , γ

′
r/vr with vr given by (62).

Remark 4.6 If γ is a pure jump a-stable subordinator, then νr(x) = 1/xa and the scaling property gives γ̄r
d= Sa,1,Γ (1−a)/a

1 .

If furthermore for all t > 0, βr = β deterministic, then Sα,βr ,γ̄r
1

d= Sα a,β ′,γ′
1 , for some β

′ ∈ (−1,1), γ
′ > 0. The estimates (65-

66-67) are an immediate consequence of the behavior of the stable densities given in the proof of Theorem 4.1. The fol-
lowing are examples of processes satisfying the conditions of Theorem 4.5. Let 0 < b,b1,⋯,bN < 1 and c,c1,⋯cN > 0. Let
γ

1, γ
2 a pure jump subordinators having Lévy measures equal respectively to ν1(dx) =∑N

k=1 ci x−(bk+1)1lx>0 dx and ν2(dx) =
cx−(b+1)1lx>0 dx+δ1(dx). γ

1 is the sum of independent stable subordinators, and γ
2 is the independent sum of a stable subor-

dinator and a standard Poisson process. Let b∨ =maxbi, b∧ =minbi. Then ν1(x) = x−b∨ L∨1 (x) = x−b∧ L∧1 (x), ν2(x) = x−b L2(x)
and it is easily seen that L∨1 , L2 are slowly varying at 0, L1 is slowly varying at ∞ and 0 < y < x implies

(y
x
)

b∨−b∧
≤

L∨1 (y)
L∨1 (x)

≤ 1, 1 ≤=
L∧1 (y)
L∧1 (x)

≤ (y
x
)

b∧−b∨
and (y

x
)

b/2
≤ L2(y)

L2(x)
≤ 2 .

As a consequence of Theorem (4.5), we can state:

Corollary 4.7 Assume (Sa,b). Denote for i = 1,N, t > 0, k ∈N and z ∈R, Hi,t(z) the density of Y i
t , for T > 0, T1 = [T,∞), TN =

[0,T ] and

Fk
i,t(z) =

RRRRRRRRRRR

(Hi,t)(k) (z)
Hi,t(z)

RRRRRRRRRRR
.

Then, for every nonnegative integer s, we have

0 ≤ r ≤ k, 0 < ρ < 1− 1
2(a1+1)

Ô⇒ z↦ sup
t∈Ti

(∣z∣r Fk
i,t(z))

s
Hi,t(z)2(1−ρ) ∈ L1(dz) . (68)

Proof. Using Remark 4.6, the subordinator Z in (61) has a Lévy measure satisfying the required conditions and they imply,
according to Theorem 4.5 c), that the family (H1,t)t∈T1 behaves like (G3

r)r∈R3 and (HN,t)t∈TN behaves like (G4
r)r∈R4 with

c = a1/α and d = aN/α .

Proof (Proof of Theorem 4.3). We take up a method analog to the one of the proof of Theorem 4.1, that is, we have to verify
the assumptions of Corollary 3.3. Let

In = ∫ [1+ z
(Hi,un)

′

Hi,un

(z)]
2

Hi,un(z)dz ,

Jn(ρ) = (γ un)(2ρ−1)/α ∫
⎡⎢⎢⎢⎢⎣
∣1+ z

(Hi,un)
′

Hi,un

(z)∣
2

+ ∣2+4z
(Hi,un)

′

Hi,un

(z)+ z2 (Hi,un)
′′

Hi,un

(z)∣
⎤⎥⎥⎥⎥⎦

2

Hi,un(z)2(1−ρ)dz .

By Corollary 4.7, the functions Fk
i,t , satisfy

sup
n∈N

(∣z∣r Fk
i,un

)s
(Hi,un)

2(1−ρ) ∈ L1(dz),

for s ∈ {0,1,2,3,4}, r ∈ {0,1,⋯,k}, 0 ≤ k ≤ 2, and ρ ≤ 1− 1
2(a1+1) . The rest is obtained by reproducing the proof of Theorem

4.1,
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Remark 4.8 Notice that the main argument for proving Theorem 4.3 is the behavior of the densities uniformly in time.
Theorem 4.5 provides many other examples. For example, with the same proof as in Theorem 4.3, one could state a version
with stable processes time changed by any independent nice subordinator. The time change process could be the sum of
a stable subordinator and a Poisson process (see Remark 4.6). Finally, it appears that more investigation concerning the
behavior in small time of densities of Lévy processes attracted by stable processes, would be extremely useful for the kind of
statistical properties we are looking for.

5 How to build a LAN model from another LAN model?

In this section we treat the following question: to which extent is crucial the choice of the asymptotic? More precisely, if we
start from a LAN model associated to the observations along a discretization scheme iun, 1 ≤≤ n, of a processus de Lévy X ,
how can we affirm that the model associated to the observations of X + X̃ , where X̃ is another independent Lévy process also
enjoys the LAN property with the same discretization scheme? For the answer, we need some preliminaries and two lemmas.

Consider two independent Lévy processes Y and N defined on some probability space (Ω̄ , F̄ , P̄) with set values the
Skorokhod space Ω = D(R+,R) (when the processes Y and N are seen as infinite-dimensional random variables). Assume
that N is a non-drifted compound Poisson process, with Lévy measure ν and denote Ỹ = Y +N . Recall that the observed
increment processes Xn along a scheme un of a process X is defined in (9) by

Xn
j = X( j+1)un −X j un , 0 ≤ j ≤ n−1.

For θ ∈Θ , suppose we observe Xn = θY n, X̃n = θỸ n and let

Pθ =Law(θ Y ∣ P) and P̃θ =Law(θ Ỹ ∣ P).

The probability measure Pn
θ

(respectively P̃n
θ

) and the scale models En (respectively Ẽn) correspond to X (respectively X̃)
as in (10) and (11).

Recall that if Q,Q′ are two probability measures on some sample space, then the total variation distance ∣∣ Q−Q′ ∣∣, is the
quantity

∣∣ Q−Q′ ∣∣= sup
φ∈Φ

∣EQ(φ)−EQ′(φ) ∣, Φ = {φ ∶Ω → [−1,1],φ measurable} .

Lecam’s Lemma [15] says:

Lemma 5.1 For every probability measures Q, Q′, R, R′ , we have the inequality

∫ 1∧ ∣ dR
dQ

− dR′

dQ′ ∣ d(Q+Q′) ≤∣∣ Q−Q′ ∣∣ +2 ∣∣ R−R′ ∣∣ +(2 ∣∣ Q−Q′ ∣∣ ∣∣ R+R′ ∣∣)1/2 . (69)

We have:

Lemma 5.2 If limn→+∞nun = 0, then lim
n→+∞

sup
θ∈Θ

∣∣ Pn
θ − P̃

n
θ ∣∣= 0.

Proof. Since

P̄(Nun ∈ dy) = e−ν(R)un
+∞
∑
k=0

un
k

k!
ν
∗k(dy) and P̄(Nun = 0) ≥ e−ν(R)un ,

and since N has stationary and independent increments, we have
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∣Pn
θ − P̃

n
θ
∣ = sup

φ∈Φ

∣EPn
θ
[φ(X)]−EP̃n

θ

[φ(X)]∣ = sup
φ∈Φ

∣EPθ
[φ(Xn)]−EP̃θ

[φ(Xn)]∣

= sup
φ∈Φ

∣EP̄[φ(θ Y n)]−EP̄[φ(θỸ n)]∣ = sup
φ∈Φ

∣EP̄[φ(θ Y n)]−EP̄[φ(θ(Y n+Nn))]∣

= sup
φ∈Φ

∣EP̄[φ(Y n)]−EP̄[φ(Y n+Nn)]∣ = sup
φ∈Φ

∣EP̄[(φ(Y n)−φ(Y n+Nn))1lNn≡/ 0]∣

≤ 2 P̄(Nn ≡/ 0) = 2(1− P̄(Nn ≡ 0)) = 2(1− P̄(N( j+1)un −N j un = 0, ∀0 ≤ j ≤ n))

≤ 2(1− P̄(Nun = 0)n) ≤ 2(1−e−ν(R)nun ).

It is now clear that ∣∣ Pn
θ
− P̃n

θ
∣∣ goes to 0, uniformly in θ as nun→ 0.

We can now able to complete the problem studied by Far [7] who treated the case where Y is a brownian motion and the
discretization path is un = 1/n, i.e. limn→∞nun = 1.

Theorem 5.3 Assume limn→∞nun = 0. If the scale model (5) En associated to the process X has the LAN property with speed√
n in a point θ0 ∈Θ , then so is the scale model Ẽn associated to the process X̃ .

Proof (Proof of Theorem 5.3). 1) Fix θ0 ∈Θ , J, where J is a finite subset of R and ξ ∈ R. We shall prove that the weak func-
tional convergence (15) of the likelihood processes (Zn,ηξ )

η∈J of En yields the one of the likelihood processes (Z̃n,ηξ )
η∈J

of Ẽn. The expression of the likelihood processes are given by given by (14) and for more convenience, we denote them from
now on by

Zn
t = (Zn,ηξ

k )
η∈J , Z̃n

t = (Z̃n,ηξ

t )
η∈J and Z′t = (Z

′,ηξ

t )
η∈J , t ∈ [0,1] .

We need to show the following convergence in laws: when n→∞,

Law( Zn ∣ Pn
[ξ]n

) Ð→ Law( (Z
′
ηξ )

η∈J ∣ P′
ξ
)Ô⇒Law( Z̃n ∣ P̃n

[ξ]n
) Ð→ Law ( (Z

′
ηξ )

η∈J ∣ P′
ξ
),

or, equivalently, for every K-Lipschitz function f ∶D(R+,RJ)→R, bounded by a constant C > 0, we need to show that

lim
n→+∞

EPn
[ξ]n

[ f (Zn)] =EP′
ξ

[ f (Z′)]Ô⇒ lim
n→+∞

EP̃n
[ξ]n

[ f (Z̃n)] =EP′
ξ

[ f (Z′)] .

2) For such functions f , we will control the difference

EPn
[ξ]n

[ f (Zn)]−EP̃n
[ξ]n

[ f (Z̃n)] = (EPn
[ξ]n

[ f (Zn)]−EP̃n
[ξ]n

[ f (Zn)]) +(EP̃n
[ξ]n

[ f (Zn)]−EP̃n
[ξ]n

[ f (Z̃n)]) .

In virtue of Lemma (5.2), we have

∣EPn
[ξ]n

[ f (Zn)]−EP̃n
[ξ]n

[ f (Z̃n)]∣ ≤C sup
θ∈Θ

∣∣ Pn
θ − P̃

n
θ ∣∣→ 0, asn→∞. (70)

For every ε > 0, we have

EP̃n
[ξ]n

[ f (Zn)− f (Z̃n)] = EP̃n
[ξ]n

[( f (Zn)− f (Z̃n)) 1l∣Zn−Z̃n∣≤ε
]+EP̃n

[ξ]n
[( f (Zn)− f (Z̃n)) 1l∣Zn−Z̃n∣>ε

]

∣EP̃n
[ξ]n

[ f (Zn)]− f (Z̃n)]∣ ≤ ε K+2C P̃n
[ξ]n

(∣ Zn− Z̃n ∣> ε) . (71)

With representation (14), observe that Zn and Z̃n are step-processes and depend on time up to time [nt], t ∈ [0,1]. Then,
denoting τ

n = inf{1 ≤ j ≤ n s.t. ∣ Zn
j − Z̃n

j ∣> ε, ∀η ∈ J, ξ ∈R}, and using Markov in equality, we obtain

P̃n
[ξ]n

(∣ Zn− Z̃n ∣> ε) = P̃n
[ξ]n

(∣ Zn
τn − Z̃n

τn ∣> ε) = P̃n
[ξ]n

(∣ Zn
i − Z̃n

j ∣> ε, ∀1 ≤ j ≤ n)

≤ 1
ε
EP̃n

[ξ]n
[1∧ ∣ Zn

τn − Z̃n
τn ∣] .

Using Lemma 5.1 with R = Pn
[η]n

, Q = Pn
[ξ]n

, R′ = P̃n
[η]n

, Q′ = P̃n
[ξ]n

, we get
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EP̃n
[ξ]n

[1∧ ∣ Zn
τn − Z̃n

τn ∣] ≤ 2sup
θ∈Θ

[3 ∣∣ Pn
θ − P̃

n
θ ∣∣ +(2 ∣∣ Pn

θ − P̃
n
θ ∣∣)1/2]

and Lemma 5.2 gives
lim

n→+∞
sup

η∈J,ξ∈R
P̃n
[ξ]n

(∣ Zn− Z̃n ∣> ε) = 0 .

The latter, together with (71), allows to conclude that

lim
n→+∞

EPn
[ξ]n

[ f (Zn)− f (Z̃n)] = 0.
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