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Q.No:1 (a) Determine whether or not the sequence {\/n2 +n— n}M converges, and if it
Converges fid its limit.
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(b) Use partial sums to determine the convergence or divergence of the series:
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Solution: Given series can be re-written as follows:

Solution:

[In(@) — In(2)]+[In(2) - In(3)]+[In(3) — In(4) ]+ ......... +[In(n) =In(n+1)]+.........

Therefore First partial sum S, =In(W) —-1In(2) =—-In(2)
Second Partial sum S, =[In(@) —In(2)]+[In(2) —In(3)] = —In(3)
nth partial sum S,=-In(n+1) = LimS, =—x.
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Hence the series is divergent.

Q.No:2 (a)Determine whether the following infinite series is convergent or divergent

Z“’: 1

= n(In(n))’
Solution: Here we use the integral test with the following function
1
f(X)=———
n(In(x))’
i) f'(x)<0 for X > 2 = itis decreasing;
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Hence Convergent.

Sin (j
. = n
(b) Test the convergence of the series Z—z .
=1 N
Solution: Try the Sandwich theorem:

0< Sinz(lj <1
n

. 1
Sin?
. <N - nj.
= since Z_z is convergent, Z—Z
n=1 N n=1 n
by Basic Comparison test.

(C) Determine whether the series » (—1)" ——— converges absolutely, converges
; nvn+1

Conditionally, or diverges.
Solution: First check absolute convergence
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Now compare with the series Z —5 = Z b, , which is

n=1 n

n=1 n & n=1
Convergent.
a 32
Lim— = Lim—————— =1. Hence both series converge or
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Diverge together. So the given series is convergent.
Q.No: 3 (a) Find the interval of convergence and the radius of convergence of the power

Series Z:(—l)n EXn
n-1 n
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Solution: Lim|—*=

n—o0

o =[x
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= given series is absolutely convergent if |X| <l=-1<x<1,,
Now check convergenceat X =—1 and X =1.



At X=-1 Z D" E -D" = Zg it is clearly divergent
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At x=1 Z (G 2 M" = Z:(—l)n 2 convergent AS.
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Interval of convergence —1< X <1 and radius of convergence = (=) =1.

(b)Find the Maclaurin’s series for the function f(X) =e€* and use it to approximate

1
The integral J.x“exdx.
0
Solution:
f(x)=e*= f(0)=1f'(0)=1 f"(0)=1.............. ™ (0)=1,.......
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