King Saud University: Mathematics Department Math-254
Second Semester
Maximum Marks $=40$
1444 H Solution of Final Examination
Note: Check the total number of pages are Six (6).
(15 Multiple choice questions and Two (2) Full questions)
The Answer Tables for Q. 1 to Q. 15 : Marks: 2 for each one $(2 \times 15=30)$

Ps. : Mark $\{\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d$\}$ for the correct answer in the box.

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a,b,c,d															

Question No.	Marks Obtained	Marks for Questions
Q. 1 to Q. 15		30
Q. 16		5
Q. 17		5
Total		40

The Answer Tables for Q. 1 to Q. 15 : Marks: 2 for each one $(2 \times 15=30)$

Ps. : Mark $\{\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d$\}$ for the correct answer in the box.(Math)

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a,b,c,d	b	a	c	b	a	c	b	c	a	c	b	a	c	a	c

The Answer Tables for Q. 1 to Q. 15 : Marks: 2 for each one $(2 \times 15=30)$

Ps. : Mark $\{\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d$\}$ for the correct answer in the box.(MAth)

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a,b,c,d	c	b	a	c	b	a	c	b	b	a	c	c	a	b	b

The Answer Tables for Q. 1 to Q. 15 : Marks: 2 for each one $(2 \times 15=30)$

Ps. : Mark \{a, b, c or d\} for the correct answer in the box.(MATh)

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a,b,c,d	a	c	b	a	c	b	a	a	c	b	a	b	b	c	a

Question 16: Let $x_{0}=1, x_{1}=1, x_{2}=1, x_{3}=2, f(x)=\frac{2}{x}$, and the third divided difference is $f[1,1,1,2]=-1$. Compute the absolute error and an error bound for the approximation of $f(1.5)$ using cubic Newton's polynomial.

Solution. Since $f(x)=\frac{2}{x}$ and $x_{0}=1, x_{1}=1, x_{2}=1, x_{3}=2$, so we have the first four derivatives of the function are

$$
f^{(1)}(x)=\frac{-2}{x^{2}}, \quad f^{(2)}(x)=\frac{4}{x^{3}}, \quad f^{(3)}(x)=\frac{-12}{x^{4}}, \quad f^{(4)}(x)=\frac{48}{x^{5}}
$$

Since the cubic Newton's interpolating polynomial has the following form
$p_{3}(x)=f\left[x_{0}\right]+\left(x-x_{0}\right) f\left[x_{0}, x_{1}\right]+\left(x-x_{0}\right)\left(x-x_{0}\right) f\left[x_{0}, x_{1}, x_{2}\right]+\left(x-x_{0}\right)\left(x-x_{0}\right)\left(x-x_{1}\right) f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$,
then using the given x points and interpolating point $x=1.5$, we have
$p_{3}(1.5)=f(1)+(1.5-1) f[1,1]+(1.5-1)(1.5-1) f[1,1,1]+(1.5-1)(1.5-1)(1.5-1) f[1,1,1,2]$,
Now the values of first, second and third-order divided differences are as follows:

$$
\begin{gathered}
f[1,1]=f^{(1)}(1)=-2, \\
f[1,1,1]=\frac{f^{(2)}(1)}{2!}=\frac{4}{2}=2, \\
f[1,1,1,2]=-1
\end{gathered}
$$

Thus

$$
f(1.5) \approx p_{3}(1.5)=2+(0.5)(-2)+(0.25)(2)+(0.1250)(-1)=1.3750
$$

the required approximation of $f(1.5)$ and

$$
\left|f(1.5)-p_{3}(1.5)\right|=\left|f(1.5)-p_{3}(1.5)\right|=|1.3333-1.3750|=0.0417
$$

the possible absolute error in the approximation.
Taking the fourth derivative of the given function, we obtain

$$
f^{(4)}(x)=\frac{48}{x^{5}} \quad \text { and } \quad\left|f^{(4)}(\eta(x))\right|=\left|\frac{48}{(\eta(x))^{5}}\right|, \quad \text { for } \quad \eta(x) \in(1,2)
$$

Since

$$
\left|f^{(4)}(1)\right|=48 \quad \text { and } \quad\left|f^{(4)}(2)\right|=1.5
$$

so $\left|f^{(4)}(\eta(x))\right| \leq \max _{1 \leq x \leq 2}\left|\frac{48}{x^{5}}\right|=48$ and it gives

$$
\left|f(1.5)-p_{3}(1.5)\right| \leq \frac{48}{24}|(1.5-1)(1.5-1)(1.5-1)(1.5-2)|=0.1250
$$

which is the required error bound for the approximation $p_{3}(1.5)$.

Question 17: Find the approximation of $f^{\prime \prime}(0.8)$ by using the following set of data points using three-point central difference rule:

x	0.0	0.11	0.24	0.3	0.4	0.5	0.6	0.72	0.8	0.9	1.05	1.11	1.2
$f(x)$	1.00	1.10	1.2	1.26	1.32	1.38	1.43	1.47	1.50	1.52	1.55	1.55	1.56

The function tabulated is $f(x)=x+\cos x$ (x in radian), how many subintervals approximate the given derivative to within accuracy of 10^{-6} using the differentiation rule of $f^{\prime \prime}(x)$?

Solution. Given $x_{1}=0.8, h=0.4$, then the iterative formula for $f^{\prime \prime}$ becomes

$$
f^{\prime \prime}(0.8) \approx \frac{f(0.8+0.4)-2 f(0.8)+f(0.8-0.4)}{(0.4)^{2}}=D_{h}^{2} f(1)
$$

or

$$
f^{\prime \prime}(0.8) \approx \frac{f(1.2)-2 f(0.8)+f(0.4)}{0.16}=\frac{1.56-2(1.50)+(1.32)}{0.16}=-0.75=D_{h}^{2} f(1)
$$

is the required approximation of $f^{\prime \prime}(0.8)$.
The fourth derivative of the given function at $\eta\left(x_{1}\right)$ is

$$
f^{(4)}\left(\eta\left(x_{1}\right)\right)=\cos \eta\left(x_{1}\right)
$$

and it cannot be computed exactly because $\eta\left(x_{1}\right)$ is not known. But one can bound the error by computing the largest possible value for $\left|f^{(4)}\left(\eta\left(x_{1}\right)\right)\right|$. So bound $\left|f^{(4)}\right|$ on the interval (0.4, 1.2) is

$$
\left.M=\max _{0.4 \leq x \leq 1.2} \mid \cos x\right) \mid=0.9211
$$

at $x=0.4$.

Since the given accuracy required is 10^{-6}, so

$$
\left|E_{C}(f, h)\right|=\left|-\frac{h^{2}}{12} f^{(4)}\left(\eta\left(x_{1}\right)\right)\right| \leq 10^{-6}
$$

for $\eta\left(x_{1}\right) \in(0.4,1.2)$. Then for $\left|f^{(4)}\left(\eta\left(x_{1}\right)\right)\right| \leq M$, we have

$$
\frac{h^{2}}{12} M \leq 10^{-6}
$$

or using $h=\frac{b-a}{n}=\frac{1.2-0.4}{n}$, gives

$$
\frac{(1.2-0.4)^{2}}{n^{2}} M \leq 10^{-6}
$$

solving for n, we get

$$
n \geq \sqrt{\left(0.64 \times 0.9211 \times 10^{6}\right) / 12} \geq 221.6424, \quad \text { gives, } \quad n=222
$$

the required subintervals for approximating the given derivative to the given accuracy .

