King Saud University:	Mathematics	Department	Math-254
Second Semester	$1444~\mathrm{H}$	Solution of Fina	l Examination
Maximum Marks $= 40$		Tin	ne: 180 mins.

Note: Check the total number of pages are Six (6). (15 Multiple choice questions and Two (2) Full questions)

The Answer Tables for Q.1 to Q.15 : Marks: 2 for each one $(2 \times 15 = 30)$

Ps. : Mark {a, b, c or d} for the correct answer in the box.

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a,b,c,d															

Question No.	Marks Obtained	Marks for Questions
Q. 1 to Q. 15		30
Q. 16		5
Q. 17		5
Total		40

s Mark [a, b, c of a] for the correct answer in the box. (Math)															
Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a,b,c,d	b	a	с	b	a	с	b	с	a	с	b	a	с	a	С

Ps. : Mark {a, b, c or d} for the correct answer in the box.(Math)

The Answer Tables for Q.1 to Q.15 : Marks: 2 for each one $(2 \times 15 = 30)$

Ps. : Mark {a, b, c or d} for the correct answer in the box.(MAth)

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a,b,c,d	с	b	a	с	b	a	с	b	b	a	с	с	a	b	b

The A	Answer	Tables	for ($\mathbf{Q.1}$	to	Q.15	: Marks:	2 for	each one	$(2 \times$	15 = 3	(0)
-------	--------	--------	-------	----------------	----	------	----------	--------	----------	-------------	--------	-----

 \mathbf{a}

 \mathbf{c}

b

 \mathbf{a}

b

 \mathbf{b}

 \mathbf{c}

15

 \mathbf{a}

 Q. No.
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14

 \mathbf{a}

Ps. : Mark {a, b, c or d} for the correct answer in the box.(MATh)

 \mathbf{c}

 \mathbf{b}

 \mathbf{b}

 \mathbf{a}

a,b,c,d

 \mathbf{a}

 \mathbf{c}

Question 16: Let $x_0 = 1, x_1 = 1, x_2 = 1, x_3 = 2, f(x) = \frac{2}{x}$, and the third divided difference is f[1, 1, 1, 2] = -1. Compute the absolute error and an error bound for the approximation of f(1.5) using cubic Newton's polynomial.

Solution. Since $f(x) = \frac{2}{x}$ and $x_0 = 1, x_1 = 1, x_2 = 1, x_3 = 2$, so we have the first four derivatives of the function are

$$f^{(1)}(x) = \frac{-2}{x^2}, \qquad f^{(2)}(x) = \frac{4}{x^3}, \qquad f^{(3)}(x) = \frac{-12}{x^4}, \qquad f^{(4)}(x) = \frac{48}{x^5}.$$

Since the cubic Newton's interpolating polynomial has the following form

$$p_3(x) = f[x_0] + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_0)f[x_0, x_1, x_2] + (x - x_0)(x - x_0)(x - x_1)f[x_0, x_1, x_2, x_3],$$

then using the given x points and interpolating point x = 1.5, we have

$$p_3(1.5) = f(1) + (1.5 - 1)f[1, 1] + (1.5 - 1)(1.5 - 1)f[1, 1, 1] + (1.5 - 1)(1.5 - 1)(1.5 - 1)f[1, 1, 1, 2]$$

Now the values of first, second and third-order divided differences are as follows:

$$f[1,1] = f^{(1)}(1) = -2,$$

$$f[1,1,1] = \frac{f^{(2)}(1)}{2!} = \frac{4}{2} = 2$$

$$f[1,1,1,2] = -1.$$

Thus

$$f(1.5) \approx p_3(1.5) = 2 + (0.5)(-2) + (0.25)(2) + (0.1250)(-1) = 1.3750,$$

the required approximation of f(1.5) and

$$|f(1.5) - p_3(1.5)| = |f(1.5) - p_3(1.5)| = |1.3333 - 1.3750| = 0.0417,$$

the possible absolute error in the approximation. Taking the fourth derivative of the given function, we obtain

$$f^{(4)}(x) = \frac{48}{x^5}$$
 and $|f^{(4)}(\eta(x))| = \left|\frac{48}{(\eta(x))^5}\right|$, for $\eta(x) \in (1,2)$.

Since

$$|f^{(4)}(1)| = 48$$
 and $|f^{(4)}(2)| = 1.5$,

so $|f^{(4)}(\eta(x))| \le \max_{1\le x\le 2} \left|\frac{48}{x^5}\right| = 48$ and it gives

$$|f(1.5) - p_3(1.5)| \le \frac{48}{24} |(1.5 - 1)(1.5 - 1)(1.5 - 1)(1.5 - 2)| = 0.1250$$

which is the required error bound for the approximation $p_3(1.5)$.

Question 17: Find the approximation of f''(0.8) by using the following set of data points using three-point central difference rule:

The function tabulated is $f(x) = x + \cos x$ (x in radian), how many subintervals approximate the given derivative to within accuracy of 10^{-6} using the differentiation rule of f''(x)?

Solution. Given $x_1 = 0.8, h = 0.4$, then the iterative formula for f'' becomes

$$f''(0.8) \approx \frac{f(0.8+0.4) - 2f(0.8) + f(0.8-0.4)}{(0.4)^2} = D_h^2 f(1),$$

or

$$f''(0.8) \approx \frac{f(1.2) - 2f(0.8) + f(0.4)}{0.16} = \frac{1.56 - 2(1.50) + (1.32)}{0.16} = -0.75 = D_h^2 f(1),$$

is the required approximation of f''(0.8). The fourth derivative of the given function at $\eta(x_1)$ is

$$f^{(4)}(\eta(x_1)) = \cos \eta(x_1),$$

and it cannot be computed exactly because $\eta(x_1)$ is not known. But one can bound the error by computing the largest possible value for $|f^{(4)}(\eta(x_1))|$. So bound $|f^{(4)}|$ on the interval (0.4, 1.2) is

$$M = \max_{0.4 \le x \le 1.2} |\cos x| = 0.9211,$$

at x = 0.4.

Since the given accuracy required is 10^{-6} , so

$$|E_C(f,h)| = \left| -\frac{h^2}{12} f^{(4)}(\eta(x_1)) \right| \le 10^{-6},$$

for $\eta(x_1) \in (0.4, 1.2)$. Then for $|f^{(4)}(\eta(x_1))| \leq M$, we have

$$\frac{h^2}{12}M \le 10^{-6},$$

or using $h = \frac{b-a}{n} = \frac{1.2 - 0.4}{n}$, gives

$$\frac{(1.2-0.4)^2}{n^2}M \le 10^{-6},$$

solving for n, we get

$$n \ge \sqrt{(0.64 \times 0.9211 \times 10^6)/12} \ge 221.6424$$
, gives, $n = 222$,

the required subintervals for approximating the given derivative to the given accuracy.