King Saud University: Mathematics Department Math-254

First Semester
Maximum Marks $=40$

Final Examination
Time: 180 mins.

Name of the Student:
I.D. No. \qquad

Name of the Teacher:
Section No.
Note: Check the total number of pages are Seven (7). (16 Multiple choice questions and Three (3) Full questions)

The Answer Tables for Q. 1 to Q. 16 : Marks: 1.5 for each one $(1.5 \times 16=24)$

Ps. : Mark $\{\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d$\}$ for the correct answer in the box.

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
a,b,c,d																

Quest. No.	Marks Obtained	Marks for Questions
Q. 1 to Q. 16		24
Q. 17		6
Q. 18		5
Q. 19		5
Total		40

The Answer Tables for Q. 1 to Q. 16 : Marks: 1.5 for each one $(1.5 \times 16=24)$

Ps. : Mark $\{\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d$\}$ for the correct answer in the box.(Math)

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$	c	b	a	c	b	a	c	b	b	a	c	c	a	b	b	c

The Answer Tables for Q. 1 to Q. 16 : Marks: 1.5 for each one $(1.5 \times 16=24)$

Ps. : Mark $\{\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d$\}$ for the correct answer in the box.(MAth)

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$	b	a	b	b	a	c	b	c	a	c	b	a	c	a	c	a

The Answer Tables for Q. 1 to Q. 16 : Marks: 1.5 for each one $(1.5 \times 16=24)$

Ps. : Mark \{a, b, c or d\} for the correct answer in the box.(MATh)

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$	a	c	c	a	c	b	a	a	c	b	a	b	b	c	a	b

Question 17: Consider the following linear system of equations

$$
\begin{aligned}
2 x_{1}+x_{2} & =3 \\
x_{1}+8 x_{2}+x_{3} & =10 \\
x_{2}+2 x_{3} & =3
\end{aligned}
$$

Use Jacobi iterative method and the initial solution $\mathbf{x}^{(\mathbf{0})}=[0.5,0.5,0.5]^{T}$ to compute second approximation $\mathbf{x}^{(2)}$. Use the computed second approximation to find the error bound for the relative error.

Solution. The Jacobi method for the given system is

$$
\begin{aligned}
x_{1}^{(k+1)} & =\frac{1}{2}\left[3-x_{2}^{(k)}\right] \\
x_{2}^{(k+1)} & =\frac{1}{8}\left[10-x_{1}^{(k)}-x_{3}^{(k)}\right] \\
x_{3}^{(k+1)} & =\frac{1}{2}[3
\end{aligned}
$$

Starting with initial approximation $x_{1}^{(0)}=0.5, x_{2}^{(0)}=0.5, x_{3}^{(0)}=0.5$, and for $k=0,1$, we obtain the first and the second approximations as

$$
\mathrm{x}^{(1)}=[1.25,1.125,1.25]^{\mathrm{T}} \quad \text { and } \quad \mathrm{x}^{(2)}=[0.9375,0.9375,0.9375]^{\mathrm{T}} .
$$

Since the inverse of the matrix is

$$
A^{-1}=\left[\begin{array}{rrr}
15 / 28 & -1 / 14 & 1 / 28 \\
-1 / 14 & 1 / 7 & -1 / 14 \\
1 / 28 & -1 / 14 & 15 / 28
\end{array}\right]=\left[\begin{array}{rrr}
0.5357 & -0.0714 & 0.0357 \\
-0.0714 & 0 . r 1429 & -0.0714 \\
0.0357 & -0.0714 & 0.5357
\end{array}\right],
$$

so the condition number of the matrix is

$$
K(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}=10 \times 0.6429=6.4286 .
$$

The residual vector can be calculated as

$$
\mathbf{r}=\mathbf{b}-A \mathbf{x}^{*}=\left(\begin{array}{l}
3 \\
10 \\
3
\end{array}\right)-\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 8 & 1 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{l}
0.9375 \\
0.9375 \\
0.9375
\end{array}\right)=\left(\begin{array}{l}
0.1875 \\
0.6250 \\
0.1875
\end{array}\right),
$$

and it gives

$$
\|\mathbf{r}\|_{\infty}=0.6250 .
$$

From relative error formula, we have

$$
\frac{\left\|\mathbf{x}-\mathbf{x}^{*}\right\|}{\|\mathbf{x}\|} \leq K(A) \frac{\|\mathbf{r}\|}{\|\mathbf{b}\|}
$$

By using $K(A)=6.4286,\|\mathbf{r}\|_{\infty}=0.6250$, and $\|\mathbf{b}\|_{\infty}=10$, we obtain

$$
\frac{\left\|\mathrm{x}-\mathrm{x}^{*}\right\|}{\|\mathrm{x}\|} \leq(6.4286) \frac{(0.6250)}{10}=0.4018 .
$$

Question 18: If $f(x)=x^{2}+\cos 2 x$ and x-values are $\{-0.5,0.0,0.3,0.5,0.6,1.0\}$. Use the quadratic Lagrange interpolating polynomial for equally spaced data points to find the best approximation of $0.16+\cos 0.8$. Compute an error bound and the absolute error.

Solution. Since the given function is $x^{2}+\cos 2 x$, so by taking $2 x=0.8$, we have $x=0.4$, therefore, the best points for the equally spaced data points Lagrange quadratic polynomial are, $x_{0}=0.0, x_{1}=0.3$, and $x_{2}=0.6$ with $h=0.3$. Consider the quadratic Lagrange interpolating polynomial as

$$
\begin{gather*}
f(x)=p_{2}(x)=L_{0}(x) f\left(x_{0}\right)+L_{1}(x) f\left(x_{1}\right)+L_{2}(x) f\left(x_{2}\right) \tag{1}\\
f(0.4) \approx p_{2}(0.4)=L_{0}(0.4)(1.0000)+L_{1}(0.4)(0.9153)+L_{2}(0.4)(0.7224) \tag{2}
\end{gather*}
$$

The Lagrange coefficients can be calculate as follows:

$$
\begin{aligned}
& L_{0}(0.4)=\frac{(0.4-0.3)(0.4-0.6)}{(0.0-0.3)(0.0-0.6)}=-0.1111 \\
& L_{1}(0.4)=\frac{(0.4-0.0)(0.4-0.6)}{(0.3-0.0)(0.3-0.6)}=0.8889 \\
& L_{2}(0.4)=\frac{(0.4-0.0)(0.4-0.3)}{(0.6-0.0)(0.6-0.3)}=0.2222
\end{aligned}
$$

Putting these values of the Lagrange coefficients in (2), we have

$$
f(0.4) \approx p_{2}(0.4)=(-0.1111)(1.0000)+(0.8889)(0.9153)+(0.7224)(0.2222)=0.8630
$$

which is the required approximation of the given exact solution $0.16+\cos 0.8 \approx 0.8567$.
To compute an error bound for the approximation of the given function in the interval $[0.0,0.6]$, we use the following quadratic error formula

$$
\left|f(x)-p_{2}(x)\right| \leq \frac{M h^{3}}{9 \sqrt{3}}
$$

As

$$
M=\max _{0.0 \leq x \leq 0.6}\left|f^{(3)}(x)\right|
$$

and the first three derivatives are

$$
\begin{gathered}
f^{\prime}(x)=2 x-2 \sin 2 x, \quad f^{\prime \prime}(x)=2-\cos 2 x, \quad f^{(3)}(x)=8 \sin 2 x \\
M=\max _{0.0 \leq x \leq 0.6}|8 \sin 2 x|=7.4563
\end{gathered}
$$

Hence

$$
\left|f(0.4)-p_{2}(0.4)\right| \leq \frac{(7.4563)\left(0.3^{3}\right)}{9 \sqrt{(3)}}=0.0129
$$

which is desired error bound. Also, we have

$$
\left|f(0.4)-p_{2}(0.4)\right|=|(0.16+\cos 0.8)-0.8630|=|0.8567-0.8630|=0.0063
$$

the desired absolute error.

Question 19: The following table is for the data point $(x, x+\cos x)$:

$$
\begin{array}{l|lllllllllllll}
x & 0.0 & 0.1 & 0.21 & 0.3 & 0.4 & 0.5 & 0.6 & 0.75 & 0.8 & 0.92 & 1.0 & 1.1 & 1.2 \\
\hline f(x) & 1.00 & 1.10 & 1.19 & 1.26 & 1.32 & 1.38 & 1.43 & 1.48 & 1.50 & 1.53 & 1.54 & 1.55 & 1.56
\end{array}
$$

Find the approximation of $\int_{0}^{1.2} f(x) d x$ by using the best integration rule and then compute absolute error and error bound.

Solution. Using equally spaced data, so we select the following set of data points as

$$
\begin{array}{l|lll}
x & 0.0 & 0.6 & 1.2 \\
\hline f(x) & 1.00 & 1.43 & 1.56
\end{array}
$$

which gives $h=0.6$ and $n=2$ (even), so the best rule is simple Simpson's rule for three points which can be used as

$$
\begin{aligned}
& \int_{0}^{1.2} f(x) d x \approx S_{2}(f)=\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \\
& \int_{0}^{1.2} f(x) d x \approx 0.2[1.00+4(1.43)+1.56]=1.6560
\end{aligned}
$$

We can easily computed the exact value of the given integral as

$$
\int_{0}^{1.2}(x+\cos x) d x=\left.\left(x^{2} / 2+\sin x\right)\right|_{0} ^{1.2}=1.6520
$$

Thus the absolute error $|E|$ in our approximation is given as

$$
|E|=\left|0.3298-S_{2}(f)\right|=|1.6520-1.6560|=0.0040
$$

The fourth derivative of the function $f(x)=x+\cos x$ can be obtain as

$$
f^{\prime}(x)=1-\sin x, \quad f^{\prime \prime}(x)=-\cos x, \quad f^{\prime \prime \prime}(x)=\sin x, \quad f^{(4)}(x)=\cos x
$$

Since $\eta(x)$ is unknown point in $(0,1.2)$, therefore, the bound $\left|f^{(4)}\right|$ on $[0,1.2]$ is

$$
M=\max _{0 \leq x \leq 1.2}\left|f^{(4)}\right|=\max _{0 \leq x \leq 1.2}|\cos x|=1.0
$$

at $x=0$. Thus the error bound formula takes form

$$
\left|E_{S_{2}}(f)\right| \leq \frac{(0.6)^{5}}{90}(1.0)=0.000864
$$

