King Saud University: Mathematics Department Math-254
Second Semester
1443 H
Final Examination
Maximum Marks $=40$

Name of the Student:
I.D. No. \qquad

Name of the Teacher:
Section No.
Note: Check the total number of pages are Seven (7). (16 Multiple choice questions and Three (3) Full questions)

The Answer Tables for Q. 1 to Q. 16 : Marks: 1.5 for each one $(1.5 \times 16=24)$

Ps. : Mark $\{\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d$\}$ for the correct answer in the box.

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
a,b,c,d																

Quest. No.	Marks Obtained	Marks for Questions
Q. 1 to Q. 16		24
Q. 17		6
Q. 18		5
Q. 19		5
Total		40

The Answer Tables for Q. 1 to Q. 16 : Marks: 1.5 for each one $(1.5 \times 16=24)$

Ps. : Mark $\{\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d$\}$ for the correct answer in the box.(MATH1)

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
a,b,c,d	b	a	b	b	a	c	b	c	a	c	b	a	c	a	c	a

The Answer Tables for Q. 1 to Q. 16 : Marks: 1.5 for each one $(1.5 \times 16=24)$

Ps. : Mark $\{\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d$\}$ for the correct answer in the box.(MATH2)

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$	a	c	c	a	d	b	a	a	c	b	a	b	b	c	a	b

The Answer Tables for Q. 1 to Q. 16 : Marks: 1.5 for each one $(1.5 \times 16=24)$

Ps. : Mark $\{\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d$\}$ for the correct answer in the box.(MATH3)

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$	c	b	a	c	b	a	c	b	b	a	c	c	a	b	b	c

Question 17: Use LU decomposition by Dollittle's method to find the value(s) of nonzero α for which the linear system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left(\begin{array}{rrr}
\alpha & 4 & 1 \\
2 \alpha & -1 & 2 \\
1 & 3 & \alpha
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}
6 \\
3 \\
5
\end{array}\right)
$$

is inconsistent and consistent. Solve the consistent system.

Solution. Since we know that

$$
A=\left(\begin{array}{rrr}
\alpha & 4 & 1 \\
2 \alpha & -1 & 2 \\
1 & 3 & \alpha
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
m_{21} & 1 & 0 \\
m_{31} & m_{32} & 1
\end{array}\right)\left(\begin{array}{rrr}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right)=L U
$$

Using $m_{21}=2 \alpha / \alpha=2=l_{21}, m_{31}=1 / \alpha=l_{31}$, and $m_{32}=\frac{3 \alpha-4}{(-9 \alpha)}=l_{32}(\alpha \neq 0)$, gives

$$
\left(\begin{array}{rrr}
\alpha & 4 & 1 \\
0 & -9 & 0 \\
0 & (3 \alpha-4) / \alpha & \left(\alpha^{2}-1\right) / \alpha
\end{array}\right) \equiv\left(\begin{array}{rrr}
\alpha & 4 & 1 \\
0 & -9 & 0 \\
0 & 0 & \left(\alpha^{2}-1\right) / \alpha
\end{array}\right)
$$

Obviously, the original set of equations has been transformed to an upper-triangular form. Thus

$$
A=\left(\begin{array}{rrr}
\alpha & 4 & 1 \\
2 \alpha & -1 & 2 \\
1 & 3 & \alpha
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
1 / \alpha & (3 \alpha-4) /(-9 \alpha) & 1
\end{array}\right)\left(\begin{array}{rrr}
\alpha & 4 & 1 \\
0 & -9 & 0 \\
0 & 0 & \left(\alpha^{2}-1\right) / \alpha
\end{array}\right)
$$

which is the required decomposition of A. The given linear system has no solution or infinitely many solution if

$$
\operatorname{det}(A)=\operatorname{det}(U)=-9 \alpha\left(\alpha^{2}-1\right) / \alpha=\left(\alpha^{2}-1\right)=0
$$

gives, $\alpha=-1$ or $\alpha=1$.
To find the solution of the given system when $\alpha=-1$ and it gives

$$
\left(\begin{array}{rrr}
-1 & 4 & 1 \\
-2 & -1 & 2 \\
1 & 3 & -1
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & -7 / 9 & 1
\end{array}\right)\left(\begin{array}{rrr}
-1 & 4 & 1 \\
0 & -9 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Now solving the lower-triangular system $L \mathbf{y}=\mathbf{b}$ for unknown vector \mathbf{y}, that is

$$
\left(\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & -7 / 9 & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{c}
6 \\
3 \\
5
\end{array}\right)
$$

Performing forward substitution yields, $\left[y_{1}, y_{2}, y_{3}\right]^{T}=[6,-9,4]^{T}$.
Then solving the upper-triangular system $U \mathbf{x}=\mathbf{y}$ for unknown vector \mathbf{x}, that is

$$
\left(\begin{array}{rrr}
-1 & 4 & 1 \\
0 & -9 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{r}
6 \\
-9 \\
4
\end{array}\right)
$$

Last row gives, $0 x_{1}+0 x_{2}+0 x_{3}=4$, which is not possible, and so no solution. To find the solution of the given system when $\alpha=1$ and it gives

$$
\left(\begin{array}{rrr}
1 & 4 & 1 \\
2 & -1 & 2 \\
1 & 3 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
1 & 1 / 9 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 4 & 1 \\
0 & -9 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Now solving the lower-triangular system $L \mathbf{y}=\mathbf{b}$ for unknown vector \mathbf{y}, that is

$$
\left(\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
1 & 1 / 9 & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{l}
6 \\
3 \\
5
\end{array}\right) .
$$

Performing forward substitution yields, $\left[y_{1}, y_{2}, y_{3}\right]^{T}=[6,-9,0]^{T}$.
Then solving the upper-triangular system $U \mathbf{x}=\mathbf{y}$ for unknown vector \mathbf{x}, that is

$$
\left(\begin{array}{rrr}
1 & 4 & 1 \\
0 & -9 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{r}
6 \\
-9 \\
0
\end{array}\right) .
$$

Last row gives, $0 x_{1}+0 x_{2}+0 x_{3}=0$, which means we have many solutions. Performing backward substitution yields

$$
\begin{aligned}
x_{1}+4 x_{2}+x_{3} & =6 \\
-9 x_{2} & =-9
\end{aligned}
$$

and it gives, $\left[x_{1}, x_{2}, x_{3}\right]^{T}=[2-t, 1, t]^{T}$, for any nonzero t.

Question 18: Use the following table to find the best approximation of $f(0.6)$ by using quadratic Lagrange interpolating polynomial for equally spaced data points

$$
\begin{array}{c|ccccccc}
x & 0.15 & 0.2 & 0.3 & 0.5 & 0.55 & 0.8 & 1 \\
\hline f(x) & -0.0427 & -0.0644 & -0.1286 & -0.1733 & -0.1808 & -0.1428 & 0
\end{array}
$$

The above table is for $f(x)=x^{2} \ln x$. Compute the absolute error and an error bound for the approximation.

Solution. Since given $x=0.6$, therefore, the best points for the equally spaced data points Lagrange quadratic polynomial are, $x_{0}=0.3, x_{1}=0.55$, and $x_{2}=0.8$ with $h=0.25$. Consider the quadratic Lagrange interpolating polynomial as

$$
\begin{gather*}
f(x)=p_{2}(x)=L_{0}(x) f\left(x_{0}\right)+L_{1}(x) f\left(x_{1}\right)+L_{2}(x) f\left(x_{2}\right) \tag{1}\\
f(0.6) \approx p_{2}(0.6)=L_{0}(0.6)(-0.1286)+L_{1}(0.6)(-0.1808)+L_{2}(0.6)(-0.1428) \tag{2}
\end{gather*}
$$

The Lagrange coefficients can be calculate as follows:

$$
\begin{aligned}
& L_{0}(0.6)=\frac{(0.6-0.55)(0.6-0.8)}{(0.3-0.55)(0.3-0.8)}=-2 / 25=-0.08 \\
& L_{1}(0.6)=\frac{(0.6-0.3)(0.6-0.8)}{(0.55-0.3)(0.55-0.8)}=24 / 25=0.96 \\
& L_{2}(0.6)=\frac{(0.6-0.3)(0.6-0.55)}{(0.8-0.3)(0.8-0.55)}=3 / 25=0.12 .
\end{aligned}
$$

Putting these values of the Lagrange coefficients in (2), we have

$$
\left.f(0.4) \approx p_{2}(0.4)=(-1 / 9)\right)(-0.0644)+(8 / 9)(-0.1733)+(2 / 9)(-0.1428)=-0.1821
$$

which is the required approximation of the given exact solution $0.36+\ln 0.6 \approx-0.1839$. The desired absolute error is

$$
\left|f(0.6)-p_{2}(0.6)\right|=\mid 0.36+\ln 0.6-(-0.17854|=|-0.1839+0.1821|=0.0018
$$

To compute an error bound for the approximation of the given function in the interval $[0.3,0.8]$, we use the following quadratic error formula

$$
\left|f(x)-p_{2}(x)\right| \leq \frac{M h^{3}}{9 \sqrt{3}}
$$

As

$$
M=\max _{0.3 \leq x \leq 0.8}\left|f^{(3)}(x)\right|,
$$

and the first three derivatives are

$$
\begin{gathered}
f^{\prime}(x)=2 x \ln x+x, \quad f^{\prime \prime}(x)=2 \ln x+3, \quad f^{(3)}(x)=\frac{2}{x} \\
M=\max _{0.3 \leq x \leq 0.8}\left|\frac{2}{x}\right|=20 / 3=6.6667
\end{gathered}
$$

Hence

$$
\left|f(0.6)-p_{2}(0.6)\right| \leq \frac{(6.6667)(0.25)^{3}}{9 \sqrt{(3)}}=0.0067
$$

which is desired error bound.

Question 19: Approximate the integral $\int_{1}^{1.8} \frac{\left(e^{x}+e^{-x}\right)}{2} d x$ by using best composite rule for $h=0.2$. Compute the absolute error and an error bound for the approximation.

Solution. Given $f(x)=\frac{\left(e^{x}+e^{-x}\right)}{2}$, and $h=0.2$, gives $n=4$. we need the equally spaced data points, so we have to take $x_{0} \stackrel{2}{=} 1, x_{1}=1.2, x_{2}=1.4, x_{3}=1.6$ and $x_{4}=1.8$.
By using the best composite formula for $n=4$, we have:

Simpson's Rule

By using the composite formula for $n=4$, we have

$$
I(f)=\int_{1}^{1.8} \frac{\left(e^{x}+e^{-x}\right)}{2} d x \approx \frac{0.2}{3}[f(1)+4[f(1.2)+f(1.6)]+2 f(1.4)+f(1.8)] .
$$

Now using the given values, we obtain

$$
I(f)=\int_{1}^{1.8} \frac{\left(e^{x}+e^{-x}\right)}{2} d x \approx \frac{0.2}{3}[1.5431+4(1.8107+2.5775)+2(2.1509)+3.1075]=1.7670,
$$

the required approximation. The absolute error is

$$
\left|I(f)-S_{4}(f)\right|=|1.7670-1.7670|=0.0000
$$

To find error bound we first compute the derivatives of the given function as

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\left(e^{x}-e^{-x}\right)}{2} \quad \text { and } \quad f^{\prime \prime}(x)=\frac{\left(e^{x}+e^{-x}\right)}{2} . \\
& f^{\prime \prime \prime}(x)=\frac{\left(e^{x}-e^{-x}\right)}{2} \quad \text { and } \quad f^{i v}(x)=\frac{\left(e^{x}+e^{-x}\right)}{2}
\end{aligned}
$$

Since $\eta(x)$ is unknown point in $(1,1.8)$, therefore, the bound $\left|f^{i v}\right|$ on $[1,1.8]$ is

$$
M=\max _{1 \leq x \leq 1.8}\left|f^{i v}(x)\right|=\left|\frac{\left(e^{x}+e^{-x}\right)}{2}\right|=3.1075 .
$$

Thus the error bound formula becomes

$$
\left|E_{S_{4}}(f)\right| \leq \frac{(0.2)^{4}(1.8-1)}{180}(3.1075)=2.2098 \times 10^{-5}
$$

which is the possible maximum error in our approximation using Simpson's rule.

