Name of the Teacher:—_____ Section No. _____

Note: Check the total number of pages are Six (6). (15 Multiple choice questions and Two (2) Full questions)

The Answer Tables for Q.1 to Q.15 : Marks: 2 for each one $(2 \times 15 = 30)$

Ps. : Mark {a, b, c or d} for the correct answer in the box.										
Q. No.	1	2	3	4	5	6	7	8	9	10
a,b,c,d										

Q. No.	11	12	13	14	15
a,b,c,d					

Quest. No.	Marks Obtained	Marks for Questions
Q. 1 to Q. 15		30
Q. 16		5
Q. 17		5
Total		40

Question 1: If $x_{n+1} = \frac{a}{b - \cos(x_n)}$, $n \ge 0$, is the fixed-point iterative form of the nonlinear equation $\frac{2}{r} + \cos(x) - 3 = 0$, then the value of the constants a and b are: (a) a = 2, b = 3 (b) a = 3, b = 2 (c) a = 2, b = 1(d) None of these Question 2: The next iterative value of the root of $x^3 = 3x - 2$ using the secant method, if the initial guesses are -2.6 and -2.4 is: (b) -2.2066 (c) -2.1066(a) -2.3066(d) None of these If the iterative scheme $x_{n+1} = x_n - k \frac{f(x_n)}{f'(x_n)}$, $n \ge 0$, converges at least Question 3: quadratic to a simple root α , than the value of k is: (a) k=2 (b) k=1(c) k=3(d) None of these **Question 4**: The l_{∞} -norm of the inverse of the Jacobian matrix for the nonlinear system $x^{2} + y^{2} = 4$, $2x - y^{2} = 0$ using $[x_{0}, y_{0}]^{t} = [1, 1]^{t}$ is: (a) 0.5 (b) 2 (c) 4 (d) None of these

Question 5: Let $A = \begin{bmatrix} 1.001 & 1.5 \\ 2 & 3 \end{bmatrix}$, then the determinant of a lower-triangular matrix L of the LU factorization using Crouts method is:

(a) 0.300 (b) 0.003 (c) 1.001 (d) None of these

Question 6: The l_{∞} -norm of the Jacobi iteration matrix of the following linear system $4x_1 - x_2 + x_3 = 7$, $4x_1 - 8x_2 + x_3 = -21$, $-2x_1 + x_2 + 5x_3 = 15$ is:

- (a) 0.4 (b) 0.5 (c) 0.625 (d) None of these
- Question 7: Using Gauss-Seidel method and starting with $\mathbf{x}^{(0)} = [1.200, 0.467, 1.033]^t$, then the first approximation of the solution for the following linear system is: $5x_1 + 2x_2 - x_3 = 6$, $x_1 + 6x_2 - 3x_3 = 4$, $2x_1 + x_2 + 4x_3 = 7$ is:

(a)
$$\mathbf{x}^{(1)} = \begin{pmatrix} 1.220\\ 0.980\\ 0.895 \end{pmatrix}$$
 (b) $\mathbf{x}^{(1)} = \begin{pmatrix} 0.897\\ 0.950\\ 1.019 \end{pmatrix}$ (c) $\mathbf{x}^{(1)} = \begin{pmatrix} 1.024\\ 1.006\\ 0.987 \end{pmatrix}$ (d) None of these

Question 8: Let $A = \begin{bmatrix} 0 & \alpha \\ 1 & 1 \end{bmatrix}$ and $1 < \alpha < 2$. If the condition number k(A) of the matrix A is 6, then α equals to

(a) 0.2 (b) 0.8 (c) 0.5 (d) None of these

Question 9: Let $x_0 = 2$, $x_1 = 2.5$, $x_2 = 4$ and $x_3 = 5.5$. If the best approximation of $f(x) = \frac{1}{x}$ at x = 3 using quadratic interpolation formula is $P_2(3) = 0.325$, then the value of the unknown point η in the error formula is equal to :

(a) 2.7859 (b) 2.9201 (c) 3.1472 (d) None of these

Question 10: If $x_0 = 0$, $x_1 = 1$, $x_2 = 3$ and for a function f(x), the divided differences are $f[x_1] = 2$, $f[x_2] = 3$, $f[x_0, x_1] = 1$, $f[x_1, x_2] = \frac{1}{2}$, $f[x_0, x_1, x_2] = -\frac{1}{6}$. Then the approximation of $f(\frac{1}{2})$ using quadratic interpolation Newton formula is:

(a) 4.1232 (b) 1.5417 (c) 2.3481 (d) None of these

Question 11: Let $f(x) = x^3$ and h = 0.1. The absolute error for the approximation of f'(0.2) using 2-point forward difference formula is:

(a) 0.0711 (b) 0.0700 (c) 0.0722 (d) None of these

Question 12: The absolute error for the approximation of the integral $\int_{1}^{2} \frac{1}{x+1} dx$ using simple Trapezoidal's rule is:

(a) 0.0012 (b) 0.1120 (c) 0.0112 (d) None of these

Question 13: The approximation to the integral $\int_0^2 e^x dx$ using simple Simpson's rule is:

(a) 6.4207 (b) 7.4207 (c) 8.4207 (d) None of these

Question 14: For the initial value problem, $(x + 1)y' + y^2 = 0, y(0) = 1, n = 1$, if the actual solution of the differential equation is $y(x) = \frac{1}{(1 + \ln(x + 1))}$, then the absolute error by using Euler's method for the approximation of y(0.05) is:

- (a) 0.0042 (b) 0.0350 (c) 0.0035 (d) None of these
- Question 15: Using the Taylor's method of order 2 to find the approximate value of y(0.1) for the initial-value problem, $y' = e^{-2x} 2y$, y(0) = 0.1, n = 1, is:
 - (a) 0.1846 (b) 0.1983 (c) 0.1620 (d) None of these

Question 16: Let $f(x) = \frac{3^x}{x}$ and h = 0.1 Compute the approximate value of f''(3) and the absolute error. If $\max |f^{(4)}| = 6.1022$, then find the number of subintervals required to obtain the approximate value of f''(3) within the accuracy 10^{-4} .

Question 17: Determine the number of subintervals required to approximate the integral $\int_0^2 \frac{1}{x+4} dx$, with an error less than 10^{-4} using composite Simpson's rule. Then approximate the given integral and compute the absolute error.

.