King Saud University: Mathematics Department
\qquad

Ps. : Mark $\{\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d$\}$ for the correct answer in the box.

Q. No.	1	2	3	4	5	6	7	8	9	10
a,b,c,d										

Q. No.	11	12	13	14	15
a,b,c,d					

Quest. No.	Marks Obtained	Marks for Questions
Q. 1 to Q. 15		30
Q. 16		5
Q. 17		5
Total		40

Question 1: If $x_{n+1}=\frac{a}{b-\cos \left(x_{n}\right)}, n \geq 0$, is the fixed-point iterative form of the nonlinear equation $\frac{2}{x}+\cos (x)-3=0$, then the value of the constants a and b are:
(a) $a=2, b=3$
(b) $a=3, b=2$
(c) $a=2, b=1$
(d) None of these

Question 2: The next iterative value of the root of $x^{3}=3 x-2$ using the secant method, if the initial guesses are -2.6 and -2.4 is:
(a) -2.3066
(b) -2.2066
(c) -2.1066
(d) None of these

Question 3: If the iterative scheme $x_{n+1}=x_{n}-k \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \quad n \geq 0$, converges at least quadratic to a simple root α, than the value of k is:
(a) $\mathrm{k}=2$
(b) $\mathrm{k}=1$
(c) $\mathrm{k}=3$
(d) None of these

Question 4: The l_{∞}-norm of the inverse of the Jacobian matrix for the nonlinear system $x^{2}+y^{2}=4,2 x-y^{2}=0$ using $\left[x_{0}, y_{0}\right]^{t}=[1,1]^{t}$ is:
(a) 0.5
(b) 2
(c) 4
(d) None of these

Question 5: Let $A=\left[\begin{array}{cc}1.001 & 1.5 \\ 2 & 3\end{array}\right]$, then the determinant of a lower-triangular matrix L of the LU factorization using Crouts method is:
(a) 0.300
(b) 0.003
(c) 1.001
(d) None of these

Question 6: The $l_{\infty}-$ norm of the Jacobi iteration matrix of the following linear system $4 x_{1}-x_{2}+x_{3}=7,4 x_{1}-8 x_{2}+x_{3}=-21,-2 x_{1}+x_{2}+5 x_{3}=15$ is:
(a) 0.4
(b) 0.5
(c) 0.625
(d) None of these

Question 7: Using Gauss-Seidel method and starting with $\mathbf{x}^{(\mathbf{0})}=[1.200,0.467,1.033]^{t}$, then the first approximation of the solution for the following linear system is: $5 x_{1}+2 x_{2}-x_{3}=6, x_{1}+6 x_{2}-3 x_{3}=4,2 x_{1}+x_{2}+4 x_{3}=7$ is:
(a) $\mathbf{x}^{(1)}=\left(\begin{array}{l}1.220 \\ 0.980 \\ 0.895\end{array}\right)$
(b) $\mathbf{x}^{(\mathbf{1})}=\left(\begin{array}{l}0.897 \\ 0.950 \\ 1.019\end{array}\right)$
(c) $\mathbf{x}^{(\mathbf{1})}=\left(\begin{array}{l}1.024 \\ 1.006 \\ 0.987\end{array}\right)$
(d) None of these

Question 8: Let $A=\left[\begin{array}{cc}0 & \alpha \\ 1 & 1\end{array}\right]$ and $1<\alpha<2$. If the condition number $k(A)$ of the matrix A is 6 , then α equals to
(a) 0.2
(b) 0.8
(c) 0.5
(d) None of these

Question 9: Let $x_{0}=2, x_{1}=2.5, x_{2}=4$ and $x_{3}=5.5$. If the best approximation of $f(x)=\frac{1}{x}$ at $x=3$ using quadratic interpolation formula is $P_{2}(3)=0.325$, then the value of the unknown point η in the error formula is equal to :
(a) 2.7859
(b) 2.9201
(c) 3.1472
(d) None of these

Question 10: If $x_{0}=0, x_{1}=1, x_{2}=3$ and for a function $f(x)$, the divided differences are $f\left[x_{1}\right]=2, f\left[x_{2}\right]=3, f\left[x_{0}, x_{1}\right]=1, f\left[x_{1}, x_{2}\right]=\frac{1}{2}, f\left[x_{0}, x_{1}, x_{2}\right]=-\frac{1}{6}$. Then the approximation of $f\left(\frac{1}{2}\right)$ using quadratic interpolation Newton formula is:
(a) 4.1232
(b) 1.5417
(c) 2.3481
(d) None of these

Question 11: Let $f(x)=x^{3}$ and $h=0.1$. The absolute error for the approximation of $f^{\prime}(0.2)$ using 2 -point forward difference formula is:
(a) 0.0711
(b) 0.0700
(c) 0.0722
(d) None of these

Question 12: The absolute error for the approximation of the integral $\int_{1}^{2} \frac{1}{x+1} d x$ using simple Trapezoidal's rule is:
(a) 0.0012
(b) 0.1120
(c) 0.0112
(d) None of these

Question 13: The approximation to the integral $\int_{0}^{2} e^{x} d x$ using simple Simpson's rule is:
(a) 6.4207
(b) 7.4207
(c) 8.4207
(d) None of these

Question 14: For the initial value problem, $(x+1) y^{\prime}+y^{2}=0, y(0)=1, n=1$, if the actual solution of the differential equation is $y(x)=\frac{1}{(1+\ln (x+1))}$, then the absolute error by using Euler's method for the approximation of $y(0.05)$ is:
(a) 0.0042
(b) 0.0350
(c) 0.0035
(d) None of these

Question 15: Using the Taylor's method of order 2 to find the approximate value of $y(0.1)$ for the initial-value problem, $y^{\prime}=e^{-2 x}-2 y, y(0)=0.1, n=1$, is:
(a) 0.1846
(b) 0.1983
(c) 0.1620
(d) None of these

Question 16: Let $f(x)=\frac{3^{x}}{x}$ and $h=0.1$ Compute the approximate value of $f^{\prime \prime}(3)$ and the absolute error. If $\max \left|f^{(4)}\right|=6.1022$, then find the number of subintervals required to obtain the approximate value of $f^{\prime \prime}(3)$ within the accuracy 10^{-4}.

Question 17: Determine the number of subintervals required to approximate the integral $\int_{0}^{2} \frac{1}{x+4} d x$, with an error less than 10^{-4} using composite Simpson's rule. Then approximate the given integral and compute the absolute error.

