Firs	st Semest	ter	14						_		n S	olutio			
Nar	me of the	e Stud	lent:—							– I	.D.	No			
Naı	me of the	Teac	her:—							- S	ecti	on No	. —		
	ote: C												are (Six	(6)
	The Answ	wer Ta	ables f	or Q	.1 to	Q.1	5:	Mar	·ks: 2	2 for	r eac	h one (2×15 =	= 30)	
		Р	s. : Ma	rk {a,	ь, с с	or d}	for	the o	correc	t ar	nswer	in the	oox.		
	Q. No.	1	2	3	4		5		6		7	8	9	10	
	a,b,c,d														
										'			,	'	
			Q.]	No.	11	12	,	13		14		15			
			a,b,	c,d											
						1		1			l				
Q	uest. No.		Mark	s Ob	taine	d				Ma	rks f	or Ques	stions		
Q.	Q. 1 to Q. 15							30							
	Q. 16				5										
	Q. 17											5			
	Total											40			

Question 1: If $x_{n+1} = \frac{a}{b - \cos(x_n)}$, $n \ge 0$, is the fixed-point iterative form of the nonlinear equation $\frac{2}{x} + \cos(x) - 3 = 0$, then the value of the constants a and b are:

(a) a = 2, b = 3 (b) a = 3, b = 2 (c) a = 2, b = 1 (d) None of these

Question 2: The next iterative value of the root of $x^3 = 3x - 2$ using the secant method, if the initial guesses are -2.6 and -2.4 is:

(a) -2.1066 (b) -2.2066 (c) -2.3066 (d) None of these

Question 3: If the iterative scheme $x_{n+1} = x_n - k \frac{f(x_n)}{f'(x_n)}$, $n \ge 0$, converges at least quadratic to a simple root α , than the value of k is:

(a) k=1 (b) k=2 (c) k=3 (d) None of these

Question 4: The l_{∞} -norm of the inverse of the Jacobian matrix for the nonlinear system $x^2 + y^2 = 4$, $2x - y^2 = 0$ using $[x_0, y_0]^t = [1, 1]^t$ is:

(a) 0.5 (b) 2 (c) 4 (d) None of these

Question 5: Let $A = \begin{bmatrix} 1.001 & 1.5 \\ 2 & 3 \end{bmatrix}$, then the determinant of a lower-triangular matrix L of the LU factorization using Crouts method is:

(a) 0.003 (b) 0.300 (c) 1.001 (d) None of these

Question 6: The l_{∞} -norm of the Jacobi iteration matrix of the following linear system $4x_1 - x_2 + x_3 = 7$, $4x_1 - 8x_2 + x_3 = -21$, $-2x_1 + x_2 + 5x_3 = 15$ is:

(a) 0.625 (b) 0.5 (c) 0.4 (d) None of these

Question 7: Using Gauss-Seidel method and starting with $\mathbf{x}^{(0)} = [1.200, 0.467, 1.033]^t$, then the first approximation of the solution for the following linear system is: $5x_1 + 2x_2 - x_3 = 6$, $x_1 + 6x_2 - 3x_3 = 4$, $2x_1 + x_2 + 4x_3 = 7$ is:

(a)
$$\mathbf{x}^{(1)} = \begin{pmatrix} 1.220 \\ 0.980 \\ 0.895 \end{pmatrix}$$
 (b) $\mathbf{x}^{(1)} = \begin{pmatrix} 0.897 \\ 0.950 \\ 1.019 \end{pmatrix}$ (c) $\mathbf{x}^{(1)} = \begin{pmatrix} 1.024 \\ 1.006 \\ 0.987 \end{pmatrix}$ (d) None of these

Question 8: Let $A = \begin{bmatrix} 0 & \alpha \\ 1 & 1 \end{bmatrix}$ and $\alpha < 1$. If the condition number k(A) of the matrix A is 6, then α equals to

(a) 0.5 (b) 0.8 (c) 0.2 (d) None of these

Question 9: Le	et $x_0 = 2, x_1 = 2.5,$	$x_2 = 4 \text{ and } x_3 = 5$.5. If the best approximation of											
	$f(x) = \frac{1}{x}$ at $x = 3$ using quadratic interpolation formula is $P_2(3) = 0.325$, then the value of the unknown point η in the error formula is equal to:													
(a) 2.7859	(b) 2.9201 (c	(d) Non	e of these											
Question 10: \int_{f}	f $x_0 = 0$, $x_1 = 1$, $x_2 = 0$ $[x_1] = 2$, $f[x_2] = 3$, $f[x_2] = 3$	= 3 and for a function $[x_0, x_1] = 1$, $f[x_1, x_2] = 1$ using quadratic interpretation.	of $f(x)$, the divided differences are $\frac{1}{2}$, $f[x_0, x_1, x_2] = -\frac{1}{6}$. Then the polation Newton formula is:											
(a) 1.5417	(b) 4.1232 (c	(d) Non	e of these											
	Let $f(x) = x^3$ and $h = x^3$ are 2-point forward		or for the approximation of $f'(0.2)$											
(a) 0.0700	(b) 0.0711	(c) 0.0722	(d) None of these											
	The absolute error for using simple Trapezoic		the integral $\int_1^2 \frac{1}{x+1} dx$											
(a) 0.0112	(b) 0.1120	(c) 0.0012	(d) None of these											
Question 13:	The approximation to	the integral $\int_0^2 e^x dx$	using simple Simpson's rule is:											
(a) 6.4207	(b) 7.4207	(c) 8.4207	(d) None of these											
S	Question 14: For the initial value problem, $(x+1)y'+y^2=0, y(0)=1, n=1$, if the actual solution of the differential equation is $y(x)=\frac{1}{(1+\ln(x+1))}$, then the absolute error by using Euler's method for the approximation of $y(0.05)$ is:													
(a) 0.0035	(b) 0.0350	(c) 0.0042	(d) None of these											
		Euler's method to find blem, $xy' + y' - 2y =$	the approximate value of $y(1.2)$ 0, $y(1) = 4, n = 1$, is:											

(a) 4.8364 (b) 4.3864 (c) 4.6834 (d) None of these

Question 16: Let $f(x) = \frac{3^x}{x}$ and h = 0.1 Compute the approximate value of f''(3) and the absolute error. If $\max |f^{(4)}| = 6.1022$, then find the number of subintervals required to obtain the approximate value of f''(3) within the accuracy 10^{-4} .

Question 17: Determine the number of subintervals required to approximate the integral $\int_0^2 \frac{1}{x+4} dx$, with an error less than 10^{-4} using composite Simpson's rule. Then approximate the given integral and compute absolute error.

The Answer Tables for Q.1 to Q.15 : Marks: 2 for each one $(2 \times 15 = 30)$

Ps.: Mark {a, b, c or d} for the correct answer in the box.(Math)

		, ,	-	,						,	,				
Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a,b,c,d	c	b	a	b	c	a	c	b	b	a	c	b	c	b	a

The Answer Tables for Q.1 to Q.15 : Marks: 2 for each one $(2 \times 15 = 30)$

Ps.: Mark {a, b, c or d} for the correct answer in the box.(MAth)

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a,b,c,d	b	a	c	c	a	b	b	a	c	С	a	a	b	a	b

The Answer Tables for Q.1 to Q.15: Marks: 2 for each one $(2 \times 15 = 30)$

Ps. : Mark {a, b, c or d} for the correct answer in the box.(MATh)

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a,b,c,d	a	c	b	a	b	c	a	c	a	b	b	c	a	С	c

Question 16: Let $f(x) = \frac{3^x}{x}$ and h = 0.1 Compute the approximate value of f''(3) and the absolute error. If $\max |f^{(4)}| = 6.1022$, then find the number of subintervals required to obtain the approximate value of f''(3) within the accuracy 10^{-4} .

Solution. Given $x_1 = 3, h = 0.1$, then the formula for f''(3) becomes

$$f''(3) \approx \frac{f(3+0.1) - 2f(3) + f(3-0.1)}{(0.1)^2} = D_h^2 f(3),$$

or

$$f''(3) \approx \frac{f(3.1) - 2f(3) + f(2.9)}{0.01} = \frac{3^{3.1}/3.1 - 2(3^3/3) + 3^{2.9}/2.9}{0.01} \approx 6.2755 = D_h^2 f(3).$$

To compute the absolute error for our approximation we have to compute the second derivative of f(x) as follows:

$$f'(x) = (3^x[\ln(3)x - 1])/x^2,$$

$$f''(x) = (3^x[(\ln(3))^2x^2 - 2\ln(3)x + 2])/x^3.$$

Since the exact value of f''(1) is

$$f''(3) = (3^3[(\ln(3))^2(3)^2 - 2\ln(3)(3) + 2])/(3)^3 = 6.2709,$$

therefore, the absolute error |E| can be computed as follows:

$$|E| = |f''(1) - D_h^2 f(1)| = |6.2709 - 6.2755| = 0.0046.$$

As the maximum value of the fourth derivative of the given function in the interval is given as

$$M = \max_{2.9 \le x \le 3.1} |f^{(4)}| = 6.1022,$$

and the accuracy required is 10^{-4} , so

$$|E_C(f,h)| \le \frac{h^2}{12}M \le 10^{-4},$$

we have (h=(3.1-2.9)/n)

$$\frac{(3.1-2.9)^2/n^2}{12}M \le 10^{-4}, \quad \text{solving for } n^2, \qquad n^2 \ge \frac{(6.1022)(3.1-2.9)^2(10^4)}{12},$$

by taking square root on both sides, we get, $n \ge 14.2621$, gives, n = 15.

Question 17: Determine the number of subintervals required to approximate the integral $\int_0^2 \frac{1}{x+4} dx$, with an error less than 10^{-4} using composite Simpson's rule. Then approximate the given integral and compute the absolute error.

Solution. We have to use the error formula of composite Simpson's rule which is

$$|E_{S_n}(f)| \le \frac{(b-a)}{180} h^4 M \le 10^{-4}.$$

Given the integrand is $f(x) = \frac{1}{x+4}$, and we have $f^{(4)}(x) = \frac{24}{(x+4)^5}$. The maximum value of $|f^{(4)}(x)|$ on the interval [0,2] is $\frac{3}{128}$, and thus $M = \frac{3}{128}$. Using the above error formula and h = 2/n, we get

$$\frac{48}{(90 \times 128 \times n^4)} \le 10^{-4}$$
, or $n^4 \ge \frac{48 \times 10^4}{(90 \times 128)}$.

Solving for n, gives

$$n \ge \left(\frac{48 \times 10^4}{(90 \times 128)}\right)^{1/4} = 2.5407,$$

so the number of even subintervals n required is n=4. Thus the approximation of the given integral using $h=\frac{2-0}{4}=\frac{1}{2}=0.5$ is

$$\int_0^2 \frac{1}{x+4} \approx \frac{0.5}{3} \Big[f(0) + 4[f(0.5) + f(1.5)] + 2f(1) + f(2) \Big],$$

$$\int_0^2 \frac{1}{x+4} \approx \frac{1}{6} \left[0.25 + 4(0.2222 + 0.1818) + 2(0.2) + 0.1667 \right] = 0.4055.$$

Since the exact value of the given integral is

$$\alpha = \int_0^2 \frac{1}{x+4} dx = \ln(1.5) = 0.4055,$$

so the absolute error is

 $AbsE = |exact\ solution - Approximate\ solution| = |0.4055 - 0.4055| = 0.0000,$

up to 4 decimal places.