King Saud University: Mathematics Department
Math-254
Second Semester 1444 H Final Examination
Maximum Marks $=40$
$\qquad$

Name of the Teacher:
Section No.

Note: Check the total number of pages are Six (6). ( 15 Multiple choice questions and Two (2) Full questions)

The Answer Tables for Q. 1 to Q. 15 : Marks: 2 for each one $(2 \times 15=30)$

Ps. : Mark $\{\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d$\}$ for the correct answer in the box.

| Q. No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| a,b,c,d |  |  |  |  |  |  |  |  |  |  |


| Q. No. | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| a,b,c,d |  |  |  |  |  |


| Quest. No. | Marks Obtained | Marks for Questions |
| :---: | :---: | :---: |
| Q. 1 to Q. 15 |  | 30 |
| Q. 16 |  | 5 |
| Q. 17 |  | 5 |
| Total |  | 40 |

Question 1: The value of $k$ which insures rapid convergence of $x_{n+1}=x_{n}-k\left(3-x_{n}^{2}\right)$ to $\alpha=\sqrt{3}$ is:
(a) $\frac{1}{2 \sqrt{3}}$
(b) $\frac{-1}{2 \sqrt{3}}$
(c) $\frac{-1}{4 \sqrt{3}}$
(d) None of these

Question 2: If $x_{n+1}=g\left(x_{n}\right)=\ln \left(x_{n}+2\right), x_{0}=1.5$ and $k=\max \left|g^{\prime}(x)\right|=\frac{1}{3}$, then the number of iterations to achieve accuracy $10^{-2}$ is:
(a) 4
(b) 3
(c) 2
(d) None of these

Question 3: The first approximation using Newton's method of the $x$-value of the intersection point of the curves $f(x)=x^{3}$ and $g(x)=2 x+1$ with $x_{0}=1.5$ is:
(a) 3.6316
(b) 2.6316
(c) 1.6316
(d) None of these

Question 4: The next iterative value of the root of $x^{2}-4 x+4=0$ using the secant method, if the initial guesses are $x_{0}=3$ and $x_{1}=2.5$ is:
(a) 3.3333
(b) 2.3333
(c) 1.3333
(d) None of these

Question 5: Let $\alpha=0$ be a root for the equation $\ln (x+1)=x$. This root is:
(a) multiple root, $\mathrm{m}=2$
(b) multiple root, $\mathrm{m}=3$
(c) simple root
(d) None of these

Question 6: The matrix obtained by forward elimination using simple Gaussian method on
the linear system $A \mathbf{x}=[5,7,3]^{T}$ with $A=\left(\begin{array}{rrr}1 & 1 & -1 \\ 5 & -3 & 2 \\ 2 & -1 & 1\end{array}\right)$ is:
(a) $\left(\begin{array}{rrr}1 & 1 & -1 \\ 0 & 8 & -7 \\ 0 & 0 & \frac{3}{8}\end{array}\right)$
(b) $\left(\begin{array}{rrr}1 & 1 & -1 \\ 0 & 8 & 7 \\ 0 & 0 & -\frac{3}{8}\end{array}\right)$
(c) $\left(\begin{array}{rrr}1 & 1 & -1 \\ 0 & -8 & 7 \\ 0 & 0 & \frac{3}{8}\end{array}\right)$
(d) None of these

Question 7: In the LU factorization with Doolittles method of the matrix $A=\left(\begin{array}{cc}1 & -1 \\ \alpha & 1\end{array}\right)$, the matrix $U$ is singular if $\alpha$ is equal to:
(a) 1
(b) -1
quad (c) $\pm 1$
(d) None of these

Question 8: If $\left\|T_{J}\right\|_{\infty}=\frac{1}{3}$ and $\left\|\mathbf{x}^{(1)}-\mathbf{x}^{(0)}\right\|_{\infty}=\frac{2}{3}$, then the number of the Jacobi iterations needed to achieve accuracy $10^{-2}$ in solving linear system $A \mathbf{x}=[1,2]^{T}$ by Jacobi iterative method with $A=\left(\begin{array}{rr}4 & -1 \\ -1 & 3\end{array}\right)$ and $\mathbf{x}^{(0)}=[0,0]^{T}$ is:
(a) 3
(b) 4
(c) 5
(d) None of these

Question 9: The first approximation for solving linear system $A \mathbf{x}=[4,5]^{T}$ using Gauss-Seidel iterative method with $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$ and $\mathbf{x}^{(0)}=[0.5,0.5]^{T}$ is:
(a) $[1.7500,1.6250]^{T}$
(b) $[1.0625,1.9688]^{T}$
(c) $[1.2500,1.8750]^{T}$
(d) None of these

Question 10: The error bound for $\left|f\left(\frac{\pi}{10}\right)-p_{1}\left(\frac{\pi}{10}\right)\right|$ in approximating $f\left(\frac{\pi}{10}\right)$ by the linear Lagrange polynomial passing through $x_{0}=0$ and $x_{1}=\frac{\pi}{6}$, where $f(x)=\sin x$ is:
(a) 0.2510
(b) 0.1500
(c) 0.0164
(d) None of these

Question 11: Absolute error $\left|f(0.3)-p_{1}(0.3)\right|$ in approximating $f(0.3)$ by Newton polynomial of degree one passing through $x_{0}=0$ and $x_{1}=1$, where $f(x)=x^{2}-2 x-1$ is:
(a) 0.1500
(b) 0.2100
(c) 0.0500
(d) None of these

Question 12: Let $f(x)=x^{2}+\cos x$ ( $x$ in radian) and $h=0.1$. Then, using the best 3-point formula for the approximation of $f^{\prime}(1)$, then the absolute error is:
(a) 0.0014
(b) 0.0134
(c) 0.0125
(d) None of these

Question 13: The number of subintervals $n$ needed to approximate the integral $\int_{0}^{1} \frac{1}{x+1} d x$ to an accuracy of at least $10^{-3}$ using composite Simpson's rule is:
(a) 2
(b) 6
(c) 4
(d) None of these

Question 14: If the actual solution of the initial value problem, $\frac{1}{x} y^{\prime}-y^{2}=0, y(1)=1, n=1$, is $y(x)=\frac{2}{\left(3-x^{2}\right)}$, then the absolute error by using Euler's method of $y(1.2)$ is:
(a) 0.0821
(b) 0.0723
(c) 0.0712
(d) None of these

Question 15: Using the Taylor's method of order 2 to find the approximate value of $y(0.1)$ for the initial-value problem, $y^{\prime}=e^{-2 x}-2 y, \quad y(0)=0.1, \quad n=1$, is:
(a) 0.1884
(b) 0.1983
(c) 0.1620
(d) None of these

Question 16: Let $x_{0}=1, x_{1}=1, x_{2}=1, x_{3}=2, f(x)=\frac{2}{x}$, and the third divided difference is $f[1,1,1,2]=-1$. Compute the absolute error and an error bound for the approximation of $f(1.5)$ using cubic Newton's polynomial.

Question 17: Find the approximation of $f^{\prime \prime}(0.8)$ by using the following set of data points using three-point central difference rule:

| $x$ | 0.0 | 0.11 | 0.24 | 0.3 | 0.4 | 0.5 | 0.6 | 0.72 | 0.8 | 0.9 | 1.05 | 1.11 | 1.2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f(x)$ | 1.00 | 1.10 | 1.2 | 1.26 | 1.32 | 1.38 | 1.43 | 1.47 | 1.50 | 1.52 | 1.55 | 1.55 | 1.56 |

The function tabulated is $f(x)=x+\cos x$ ( $x$ in radian), how many subintervals approximate the given derivative to within accuracy of $10^{-6}$ using the differentiation rule of $f^{\prime \prime}(x)$ ?

