Q1: Find the values of m (if possible) such that the following system:

$$
\begin{aligned}
& x_{1}+x_{2}-x_{3}=1 \\
& 2 x_{1}+3 x_{2}-3 x_{3}=1 \\
& x_{1}+x_{2}-m x_{3}=m
\end{aligned}
$$

has: (i)unique solution. (ii) infinitely many solutions. (iii) no solutions. (4 marks) Answer:
$\left[\begin{array}{ccc|c}1 & 1 & -1 & 1 \\ 2 & 3 & -3 & 1 \\ 1 & 1 & -m & m\end{array}\right] \xrightarrow[-1 R 13]{-2 R_{12}}\left[\begin{array}{ccc|c}1 & 1 & -1 & 1 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & -m+1 & m-1\end{array}\right]$
(i) $m \in \mathbb{R}-\{1\}$ (ii) $m=1$. (iii) no values.

Q2: Let V be the subspace of \mathbb{R}^{3} spanned by the set $S=\left\{v_{1}=(1,1,3), v_{2}=(2,2,6)\right.$, $\left.v_{3}=(4,5,6)\right\}$. Find a subset of S that forms a basis of V. (4 marks)
Answer:
$\left[\begin{array}{lll}1 & 2 & 4 \\ 1 & 2 & 5 \\ 3 & 6 & 6\end{array}\right] \xrightarrow[-3 R_{13}]{-1 R_{12}}\left[\begin{array}{ccc}1 & 2 & 4 \\ 0 & 0 & 1 \\ 0 & 0 & -6\end{array}\right] \xrightarrow{6 R_{23}}\left[\begin{array}{lll}1 & 2 & 4 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$
So $\left\{v_{1}, v_{3}\right\}$ is a basis of V.
Q3: Show that $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 0\end{array}\right]$ is diagonalizable and find the matrix P that diagonalizes A. (6 marks)
Answer:
Since A is upper triangular, then the Eigenvalues are $\lambda=1,-1,0$. Since they are distinct, A is diagonalizable. To find P, take the equation ($\lambda I-A) x=0$ and substitute $\lambda=1,-1,0$, as follows:
$\lambda I-A=\left[\begin{array}{ccc}\lambda-1 & -1 & -1 \\ 0 & \lambda+1 & -1 \\ 0 & 0 & \lambda\end{array}\right]$
$\lambda=1 \Rightarrow(1) I-A=\left[\begin{array}{ccc}0 & -1 & -1 \\ 0 & 2 & -1 \\ 0 & 0 & 1\end{array}\right] \xrightarrow[1 R_{32}]{1 R_{31}}\left[\begin{array}{ccc}0 & -1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right] \Rightarrow x=t, y=z=0 \& t=1 \Rightarrow x=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
$\lambda=-1 \Rightarrow(-1) I-A=\left[\begin{array}{ccc}-2 & -1 & -1 \\ 0 & 0 & -1 \\ 0 & 0 & -1\end{array}\right] \xrightarrow[-1 R_{32}]{-1 R_{31}}\left[\begin{array}{ccc}-2 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1\end{array}\right] \Rightarrow y=-2 x=-2 t, z=0 \& t=1 \Rightarrow x=\left[\begin{array}{c}1 \\ -2 \\ 0\end{array}\right]$
$\lambda=0 \Rightarrow(0) I-A=\left[\begin{array}{ccc}-1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right] \xrightarrow{1 R_{21}}\left[\begin{array}{ccc}-1 & 0 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right] \Rightarrow x=-2 z=-2 t, y=z=t \& t=1 \Rightarrow x=\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right]$

So $P=\left[\begin{array}{ccc}1 & 1 & -2 \\ 0 & -2 & 1 \\ 0 & 0 & 1\end{array}\right]$
Q4: Let \mathbb{R}^{3} be the Euclidean inner product space. Apply the Gram-Schmidt process to transform the following basis vectors (1, 2,1), (2,2,0), (3,1,1) into an orthonormal basis. (7 marks)
Answer:
Let $u_{1}=(1,2,1), u_{2}=(2,2,0), u_{3}=(3,1,1)$. To transform to orthonormal basis $\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}$, we will do as follows:

$$
\begin{aligned}
& v_{1}=u_{1}=(1,2,1) \\
& v_{2}=u_{2}-\frac{\left\langle u_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}=(2,2,0)-\frac{\langle(2,2,0),(1,2,1)\rangle}{\|(1,2,1)\|^{2}}(1,2,1) \\
& =(2,2,0)-\frac{6}{6}(1,2,1)=(2,2,0)-(1,2,1)=(1,0,-1) \\
& v_{3}=u_{3}-\frac{\left\langle u_{3}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}-\frac{\left\langle u_{3}, v_{2}\right\rangle}{\left\|v_{2}\right\|^{2}} v_{2} \\
& =(3,1,1)-\frac{\langle(3,1,1),(1,2,1)>}{\|(1,2,1)\|^{2}}(1,2,1)-\frac{\langle(3,1,1),(1,0,-1)\rangle}{\|(1,0,-1)\|^{2}}(1,0,-1) \\
& =(3,1,1)-\frac{6}{6}(1,2,1)-\frac{2}{2}(1,0,-1)=(3,1,1)-(1,2,1)-(1,0,-1)=(1,-1,1) \\
& \text { Now }, w_{1}=\frac{1}{\sqrt{6}}(1,2,1), w_{12}=\frac{1}{\sqrt{2}}(1,0,-1), w_{1}=\frac{1}{\sqrt{3}}(1,-1,1),
\end{aligned}
$$

Q5: Let $M_{n n}$ be the vector space of square matrices of order n, let $P \in M_{n n}$ be an invertible matrix, and let $T: M_{n n} \rightarrow M_{n n}$ be the map defined by $T(A)=P^{-1} A P$ for all matrices A in $M_{n n}$. Show that:
(a) T is a linear transformation. (4 marks)
(b) Find $\operatorname{ker}(\mathrm{T})$ and deduce that T is one-to-one. (2 marks)
(c) Show that T is onto. (2 marks)

Answer:
(a) For all $A, B \in M_{n n}$ and $k \in \mathbb{R}$, we have:
(i) $T(A+B)=P^{-1}(A+B) P=P^{-1} A P+P^{-1} B P=T(A)+T(B)$
(ii) $T(k A)=P^{-1}(k A) P=k\left(P^{-1} A P\right)=k T(A)$
(b) $A \in \operatorname{ker}(T) \Rightarrow 0=T(A)=P^{-1} A P \Rightarrow A=0$. So $\operatorname{ker}(T)=0$ and T is 1-1.
(c) For all $B \in M_{n n}$, we have $T\left(P B P^{-1}\right)=P^{-1}\left(P B P^{-1}\right) P=B$ and T is onto.

Or
Since T is a 1-1 linear operator and M_{nn} is finite dimensional, then T is onto (by a theorem).
Or
Since $\operatorname{ker}(T)=\{0\}$, $\operatorname{nullity}(T)=\operatorname{dim}(\operatorname{ker}(T))=0$ and hence:
$\operatorname{rank}(T)=\operatorname{dim}\left(M_{n n}\right)$-nullity $(T)=n^{2}-0=n^{2}$.
But $\operatorname{rank}(T)=\operatorname{dim}(R(T))$. So $\operatorname{dim}(R(T))=\operatorname{dim}\left(M_{n n}\right)$ and hence $R(T)=M_{n n}$ and T is onto.

Q6: Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by:
$T\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2},-2 x_{1}, x_{2}\right)$.
(a) Find $[T]_{S, B}$ where S is the standard basis of \mathbb{R}^{3} and $B=\left\{v_{1}=(1,1), v_{2}=(1,0)\right\}$ is a basis of \mathbb{R}^{2}. (3 marks)
(b) Find a basis of $R(T)$. (2 marks)

Answer:

(a) $T(1,1)=(0,-2,1), T(1,0)=(1,-2,0) \Rightarrow[T(1,1)]_{S}=[(0,-2,1)]_{S}=(0,-2,1)$, $[T(1,0)]_{S}=,[(1,-2,0)]_{S}=(1,-2,0)$. So $[T]_{S, B}=\left[\begin{array}{cc}0 & 1 \\ -2 & -2 \\ 1 & 0\end{array}\right]$
(b)As $R(T)$ is generated by the images of the basis vectors and $T(1,1)=(0,-2,1)$, $T(1,0)=(1,-2,0)$ and neither vector is a scalar multiple of the other, then $(0,-2,1)$ and $(1,-2,0)$ are the basis vectors of $R(T)$.

Q7: (a) If $T: V \rightarrow W$ is a linear transformation, then prove that the image of T is a subspace of W. (3 marks)

Answer:

Firstly, $R(T)$ is not empty since $T(0)=0$ and hence $0 \in R(T)$. Now, take w_{1} and w_{2} from $R(T)$ and $k \in \mathbb{R}$. So $w_{1}=T\left(v_{1}\right)$ and $w_{2}=T\left(v_{2}\right)$ for some v_{1} and v_{2} belongs to V.
Observe that $w_{1}+w_{2}=T\left(v_{1}\right)+T\left(v_{2}\right)=T\left(v_{1}+v_{2}\right)$ and hence $w_{1}+w_{2} \in R(T)$.
Also, $k w_{1}=k T\left(v_{1}\right)=T\left(k v_{1}\right)$ and hence $k w_{1} \in R(T)$. So $R(T)$ is a subspace of W.
(b) If u and v are orthogonal vectors in an inner product space, then prove that: $\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2} .(2$ marks $)$
Answer:

$$
\begin{aligned}
& \|u+v\|^{2}=<u+v, u+v> \\
& =<u, u>+<u, v>+<v, u>+<v, v> \\
& =<u, u>+<v, v>=\|u\|^{2}+\|v\|^{2}
\end{aligned}
$$

(c) If we have the following polynomial $f(x)=x^{5}+x^{4}-3 x^{3}-x^{2}+2 x-7$, where $x \in \mathbb{R}$, then show that $\operatorname{det}(A)=\left|\begin{array}{cccc}f(13) & f(13) & f(13) & f(13) \\ f(11) & f(12) & f(14) & f(15) \\ f(16) & f(17) & f(18) & f(19) \\ f(13)+1 & f(13)+1 & f(13)+1 & f(13)+1\end{array}\right|=0$. (1 mark)

Answer:

Since the first row and the fourth row are proportional, so the determinant equals to zero. To see this, multiply the first row by $(f(13)+1) / f(13)$ and you will get the fourth row (Clearly $f(13) \neq 0$).
Other way, you can do the following:

$$
\begin{aligned}
& \left|\begin{array}{cccc}
f(13) & f(13) & f(13) & f(13) \\
f(11) & f(12) & f(14) & f(15) \\
f(16) & f(17) & f(18) & f(19) \\
f(13)+1 & f(13)+1 & f(13)+1 & f(13)+1
\end{array}\right| \\
& =f(13)(f(13)+1)\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
f(11) & f(12) & f(14) & f(15) \\
f(16) & f(17) & f(18) & f(19) \\
1 & 1 & 1 & 1
\end{array}\right| \\
& =f(13)(f(13)+1)(0)=0
\end{aligned}
$$

Or

$\left|\begin{array}{cccc}f(13) & f(13) & f(13) & f(13) \\ f(11) & f(12) & f(14) & f(15) \\ f(16) & f(17) & f(18) & f(19) \\ f(13)+1 & f(13)+1 & f(13)+1 & f(13)+1\end{array}\right| \stackrel{-1 R_{14}}{=}\left|\begin{array}{cccc}f(13) & f(13) & f(13) & f(13) \\ f(11) & f(12) & f(14) & f(15) \\ f(16) & f(17) & f(18) & f(19) \\ f(13)+1 & f(13)+1 & f(13)+1 & f(13)+1\end{array}\right|$

$$
=\left|\begin{array}{cccc}
f(13) & f(13) & f(13) & f(13) \\
f(11) & f(12) & f(14) & f(15) \\
f(16) & f(17) & f(18) & f(19) \\
1 & 1 & 1 & 1
\end{array}\right| \stackrel{(-f(13)) R_{41}}{=}\left|\begin{array}{cccc}
0 & 0 & 0 & 0 \\
f(11) & f(12) & f(14) & f(15) \\
f(16) & f(17) & f(18) & f(19) \\
1 & 1 & 1 & 1
\end{array}\right|=0
$$

