Q1:(a) If A is a square matrix of degree 2 such that $\operatorname{det}(A)=3$, then find $\operatorname{det}(A+A)$. (2 marks)

Answer:

$\operatorname{det}(A+A)=\operatorname{det}(2 A)=2^{2} \operatorname{det}(A)=4(3)=12$
(b) If A and B are square matrices of degree 2 such that $B A=I$, where $B=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$, then find the matrix A. (2 marks)

Answer:

$A=B^{-1}=\frac{1}{\operatorname{det}(B)} \operatorname{adj}(B)=\frac{1}{1}\left[\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right]$.
(c) Suppose $(1,2)$ is a solution of the following linear system:

$$
\begin{aligned}
& x+2 y=b_{1} \\
& 2 x+3 y=b_{2}
\end{aligned}
$$

Find the values of b_{1}, b_{2}. (2 marks)

Answer:

$b_{1}=1+2(2)=5$,
$b_{2}=2+3(2)=8$.

Q2: Let V be the subspace of \mathbb{R}^{4} spanned by the set $S=\left\{v_{1}=(1,5,3,1), v_{2}=(2,3,6,2)\right.$, $\left.v_{3}=(3,8,9,3), v_{4}=(4,6,6,6)\right\}$. Find a subset of S that forms a basis of V. (4 marks)

Answer:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 3 & 8 & 6 \\
3 & 6 & 9 & 6 \\
1 & 2 & 3 & 6
\end{array}\right] \xrightarrow[\substack{-3 R_{13} \\
-1 R_{14}}]{\substack{-5 R_{12}}}\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -7 & -7 & -14 \\
0 & 0 & 0 & -6 \\
0 & 0 & 0 & 2
\end{array}\right]} \\
& \stackrel{\frac{-1}{7} R_{2}}{\frac{-1}{6} R_{3}}\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 1 & 1 & 2 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 2
\end{array}\right] \xrightarrow{-2 R_{34}}\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 1 & 1 & 2 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Using the leading ones, $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{4}\right\}$ is a basis of V .

Q3: Show that $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 0\end{array}\right]$ is diagonalizable and find the matrix P that diagonalizes A . (6 marks)

Answer:

Since A is upper triangular, then the Eigenvalues are $\lambda=1,-1,0$. Since they are distinct, A is diagonalizable. To find P, take the equation ($\lambda 1-A$) $x=0$ and substitute $\lambda=1,-1,0$, as follows:

$$
\begin{aligned}
& \lambda I-A=\left[\begin{array}{ccc}
\lambda-1 & -1 & -1 \\
0 & \lambda+1 & -1 \\
0 & 0 & \lambda
\end{array}\right] \\
& \lambda=1 \Rightarrow(1) I-A=\left[\begin{array}{ccc}
0 & -1 & -1 \\
0 & 2 & -1 \\
0 & 0 & 1
\end{array}\right] \xrightarrow[1_{122}]{1 R_{32}}\left[\begin{array}{ccc}
0 & -1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \Rightarrow x=t, y=z=0 \& t=1 \Rightarrow x=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

$$
\lambda=-1 \Rightarrow(-1) I-A=\left[\begin{array}{ccc}
-2 & -1 & -1 \\
0 & 0 & -1 \\
0 & 0 & -1
\end{array}\right] \xrightarrow[-1 R_{32}]{-1 R_{31}}\left[\begin{array}{ccc}
-2 & -1 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

$$
\Rightarrow y=-2 x=-2 t, z=0 \& t=1 \Rightarrow x=\left[\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right]
$$

$$
\lambda=0 \Rightarrow(0) I-A=\left[\begin{array}{ccc}
-1 & -1 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right] \xrightarrow{1 R_{21}}\left[\begin{array}{ccc}
-1 & 0 & -2 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

$$
\Rightarrow x=-2 z=-2 t, y=z=t \& t=1 \Rightarrow x=\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]
$$

So $\mathrm{P}=\left[\begin{array}{ccc}1 & 1 & -2 \\ 0 & -2 & 1 \\ 0 & 0 & 1\end{array}\right]$.
Q4: Let \mathbb{R}^{3} be the Euclidean inner product space. Apply the Gram-Schmidt process to transform the following basis vectors ($1,2,1$), ($2,2,0$), ($3,1,1$) into an orthonormal basis. (6 marks)

Answer:

Let $u_{1}=(1,2,1), u_{2}=(2,2,0), u_{3}=(3,1,1)$. To transform to orthonormal basis w_{1}, w_{2}, w_{3}, we will do as follows:

$$
\begin{aligned}
& v_{1}=u_{1}=(1,2,1) \\
& v_{2}=u_{2}-\frac{\left\langle u_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}=(2,2,0)-\frac{\langle(2,2,0),(1,2,1)\rangle}{\|(1,2,1)\|^{2}}(1,2,1) \\
& =(2,2,0)-\frac{6}{6}(1,2,1)=(2,2,0)-(1,2,1)=(1,0,-1) \\
& v_{3}=u_{3}-\frac{\left\langle u_{3}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}-\frac{\left\langle u_{3}, v_{2}\right\rangle}{\left\|v_{2}\right\|^{2}} v_{2} \\
& =(3,1,1)-\frac{\langle(3,1,1),(1,2,1)\rangle}{\|(1,2,1)\|^{2}}(1,2,1)-\frac{\langle(3,1,1),(1,0,-1)\rangle}{\|(1,0,-1)\|^{2}}(1,0,-1) \\
& =(3,1,1)-\frac{6}{6}(1,2,1)-\frac{2}{2}(1,0,-1)=(3,1,1)-(1,2,1)-(1,0,-1)=(1,-1,1)
\end{aligned}
$$

Now,

$$
w_{1}=\frac{1}{\sqrt{6}}(1,2,1), w_{12}=\frac{1}{\sqrt{2}}(1,0,-1), w_{1}=\frac{1}{\sqrt{3}}(1,-1,1) .
$$

Q5: Let $M_{n n}$ be the vector space of square matrices of order n and $T: M_{n n} \rightarrow M_{n n}$ the map defined by $T(A)=k A$ for all matrices A in $M_{n n}$, where k is a non-zero real number.
(a) Show that T is a linear transformation. (2 marks)
(b) Find ker(T). (2 marks)
(c) Find rank(T). (2 marks)

Answer:

(a) For all $A, B \in M_{n n}$ and $m \in \mathbb{R}$, we have:
(i) $T(A+B)=k(A+B)=k A+k B=T(A)+T(B)$
(ii) $T(m A)=k(m A)=(k m) A=(m k) A=m(k A)=m T(A)$
(b) $A \in \operatorname{ker}(T) \Rightarrow 0=T(A)=k A \Rightarrow A=0$. So $\operatorname{ker}(T)=\{0\}$.
(c) For all $B \in M_{n n}$, we have $T\left(k^{-1} B\right)=k\left(k^{-1} B\right)=\left(k^{-1}\right) B=B$ and T is onto. Hence, $R(T)=M_{n n}$ and $\operatorname{rank}(T)=\operatorname{dim}(R(T))=n^{2}$.

Or

Since $\operatorname{ker}(T)=\{0\}$, $\operatorname{nullity}(T)=\operatorname{dim}(\operatorname{ker}(T))=0$ and hence:
$\operatorname{rank}(T)=\operatorname{dim}\left(M_{n n}\right)$-nullity $(T)=n^{2}-0=n^{2}$.

Q6: Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2},-2 x_{1}, x_{2}\right)$.
(a) Find $[T]_{S, B}$ where S is the standard basis of \mathbb{R}^{3} and $B=\left\{v_{1}=(1,1), v_{2}=(1,0)\right\}$ is a basis of \mathbb{R}^{2}.
(3 marks)
(b) Find a basis of $R(T)$ (the range of T). (3 marks)

Answer:

(a) $\mathrm{T}(1,1)=(0,-2,1), \mathrm{T}(1,0)=(1,-2,0) \Rightarrow[\mathrm{T}(1,1)]_{\mathrm{S}}=[(0,-2,1)]_{\mathrm{S}}=\left[\begin{array}{lll}0 & -2 & 1\end{array}\right]^{\top}$,
$[T(1,0)]_{S}=,[(1,-2,0)]_{S}=\left[\begin{array}{lll}1 & -2 & 0\end{array}\right]^{\top}$. So $[T]_{S, B}=\left[\begin{array}{cc}0 & 1 \\ -2 & -2 \\ 1 & 0\end{array}\right]$.
(b)As $R(T)$ is generated by the images of the basis vectors and $T(1,1)=(0,-2,1), T(1,0)=(1,-2,0)$ and neither vector is a scalar multiple of the other, then $(0,-2,1)$ and $(1,-2,0)$ are the basis vectors of $R(T)$.

Or

$$
\left[\begin{array}{cc}
0 & 1 \\
-2 & -2 \\
1 & 0
\end{array}\right] \xrightarrow{R_{13}}\left[\begin{array}{cc}
1 & 0 \\
-2 & -2 \\
0 & 1
\end{array}\right] \xrightarrow{R_{23}}\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
-2 & -2
\end{array}\right] \xrightarrow[2 R_{23}]{2 R_{13}}\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

Using the leading ones, $\{(0,-2,1),(1,-2,0)\}$ is a basis of $R(T)$.
Q7: (a) If $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right]$ is the transition matrix of \mathbb{R}^{2} from a basis $\mathrm{S}=\{\mathrm{u}, \mathrm{v}\}$ to a basis $B=\{(1,1),(2,3)\}$, then find the vector u. (2 marks)

Answer:
$(u)_{B}=(1,2)$. So $u=1(1,1)+2(2,3)=(1,1)+(4,6)=(5,7)$.
(b) Show that if 1 and -1 are the eigenvalues of a square matrix A of order 2 , then we have that $\mathrm{A}^{100}=\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \cdot(2$ marks $)$

Answer:

Since 1 and -1 are distinct eigenvalues of A, then A is diagonalizable and A is similar to $D=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ such that $A=\mathrm{PDP}^{-1}$. So $\mathrm{A}^{100}=\mathrm{PD}^{100} \mathrm{P}^{-1}=\mathrm{PIP}^{-1}=\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
(c) If A and B are square matrices of order 2 such that $A^{2}+3 A=\left[\begin{array}{cc}-2 & 0 \\ 0 & -2\end{array}\right]$ and $B A+2 B=\left[\begin{array}{ll}4 & 2 \\ 5 & 3\end{array}\right]$, then find the matrices A and B. (2 marks)

Answer:

Observe that $B(A+2 I)=\left[\begin{array}{ll}4 & 2 \\ 5 & 3\end{array}\right]$ and hence $|B||A+2 I|=\left|\begin{array}{ll}4 & 2 \\ 5 & 3\end{array}\right|=2 \neq 0$. So $|A+2 I| \neq 0$ and then $A+2 I$ is invertible. Now, $A^{2}+3 A=\left[\begin{array}{cc}-2 & 0 \\ 0 & -2\end{array}\right]$ implies that $A^{2}+3 A=-2 I$ and then $A^{2}+3 A+2 I=0$. So $(A+I)(A+2 I)=0$. But $A+2 I$ is invertible, thus $A+I=0$ and $A=-I$. Now, $\left[\begin{array}{ll}4 & 2 \\ 5 & 3\end{array}\right]=B(A+2 I)=B(I)=B$.

