Q1: If A is a matrix such that $A\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}2 \\ 4\end{array}\right]$, then find:
(i) the size of A. (1 mark)
(ii) an eigenvalue of A. (1 mark)

Q2: If $A, B \in M_{22}, \operatorname{det}(B)=2$ and $\operatorname{det}(A)=3$, then find $\operatorname{det}\left(2 A^{\top} B^{-1}\right)$. (2 marks)
Q3: Let V be the subspace of \mathbb{R}^{4} spanned by the set $S=\left\{v_{1}=(1,1,1,0), v_{2}=(-2,0,0,2)\right.$, $\left.v_{3}=(-1,3,3,4), v_{4}=(-5,-1,-1,5)\right\}$.
(i) Find a subset of S that forms a basis of V. (3 marks)
(ii) Find $\operatorname{dim}(\mathrm{V})$. (1 mark)
(iii) show that $(-6,0,0,7) \in \mathrm{V}$. (3 marks)

Q4: Let $W=\left\{(a, 0) \in \mathbb{R}^{2}: a \in \mathbb{R}\right\}$. Show that W is a subspace of \mathbb{R}^{2}. (3 marks)
Q5: Let $B=\{(1,0),(1,1)\}$ and $B^{\prime}=\{u, v\}$ be two bases of \mathbb{R}^{2}. If the transition matrix from B^{\prime} to B is
$\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$, then find u. (2 marks).
Q6: Let $A=\left[\begin{array}{ccc}1 & a & b \\ 0 & -1 & c \\ 0 & 0 & 0\end{array}\right]$, where a, b and c are real numbers.
(i) Show that A is diagonalizable. (3 marks)
(ii) If P is the matrix that diagonalizes A, then find the product $P^{-1} A P$. (1 mark)
(iii) If $x=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]^{\top}$ is an eigenvector of A, then find the value of a. (2 marks)

Q7: Let \mathbb{R}^{3} be the Euclidean inner product space. Apply the Gram-Schmidt process to transform the following basis $\left\{u_{1}=(0,1,-1), u_{2}=(0,4,2), u_{3}=(1,0,0)\right\}$ into an orthonormal basis. (5 marks)
Q8: Let M_{22} be the vector space of square matrices of order 2 , and let $T: M_{22} \rightarrow \mathbb{R}$ be the function defined by $T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a$ for all $a, b, c, d \in \mathbb{R}$. Show that:
(i) T is a linear transformation. (2 marks)
(ii) Find a basis for $\operatorname{ker}(\mathrm{T})$. (3 marks)
(iii) Find $[T]_{B^{\prime}, \mathrm{B}}$ where B and B^{\prime} are the standard bases of M_{22} and \mathbb{R}, respectively. (2 marks)
(iv) Find $\operatorname{rank}(T) .(1$ mark)

Q9: (i) If $B=\{u, v, w\}$ is a basis of a vector space V, then find the coordinate vector $(v)_{B}$.
(1 mark)
(ii) If u and v are orthogonal vectors in an inner product space such that $\|u\|=8$ and $\|v\|=6$, then find $\|u+v\|$. (1 mark)
(iii) If B is a 5×7 matrix with nullity $(B)=3$, then find $\operatorname{rank}\left(B^{\top}\right)$. (1 mark)
(iv) Show that if A is a diagonalizable matrix of order n such that $A P=P A$, where P is the matrix that diagonalizes A, then A is a diagonal matrix. (1 mark)
(v) Suppose that A and B are invertible matrices of the same size. Show that if B is similar to A, then B^{-1} is similar to A^{-1}. (1 mark)

Q1: If A is a matrix such that $A\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}2 \\ 4\end{array}\right]$, then find:
(i) the size of A. (1 mark)
(ii) an eigenvalue of A . (1 mark)

Answer: (i) Suppose A is of size $m \times n$. Since $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is of size 2×1 and the product $A\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is defined, so $n=2$. But the product $A\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is of size $m \times 1$ and is equal to $\left[\begin{array}{l}2 \\ 4\end{array}\right]$ which is of size 2×1. So, $m=2$. Hence, A is of size 2×2.
(ii) Since $A\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}2 \\ 4\end{array}\right]=2\left[\begin{array}{l}1 \\ 2\end{array}\right]$, so 2 is an eigenvalue of A.

Q2: If $A, B \in M_{22}, \operatorname{det}(B)=2$ and $\operatorname{det}(A)=3$, then find $\operatorname{det}\left(2 A^{\top} B^{-1}\right)$. (2 marks)
Answer: $\operatorname{det}\left(2 A^{\top} B^{-1}\right)=2^{2} \operatorname{det}\left(A^{\top}\right) \operatorname{det}\left(B^{-1}\right)=4 \operatorname{det}(A)(\operatorname{det}(B))^{-1}=4(3)(1 / 2)=6$.
Q3: Let V be the subspace of \mathbb{R}^{4} spanned by the set $S=\left\{v_{1}=(1,1,1,0), v_{2}=(-2,0,0,2)\right.$, $\left.v_{3}=(-1,3,3,4), v_{4}=(-5,-1,-1,5)\right\}$.
(i) Find a subset of S that forms a basis of V. (3 marks)
(ii) Find $\operatorname{dim}(V)$. (1 mark)
(iii) show that $u=(-6,0,0,7) \in V$. (3 marks)

Answer: (i) Putting the vectors as columns in the following matrix:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & -2 & -1 & -5 \\
1 & 0 & 3 & -1 \\
1 & 0 & 3 & -1 \\
0 & 2 & 4 & 5
\end{array}\right] \xrightarrow[(-1) R_{13}]{(-1) R_{12}}\left[\begin{array}{cccc}
1 & -2 & -1 & -5 \\
0 & 2 & 4 & 4 \\
0 & 2 & 4 & 4 \\
0 & 2 & 4 & 5
\end{array}\right] \xrightarrow[(-1) R_{24}]{\substack{(-1) R_{23}}}\left[\begin{array}{cccc}
1 & -2 & -1 & -5 \\
0 & 2 & 4 & 4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]} \\
& \xrightarrow[R_{34}]{\frac{1}{2} R_{2}}\left[\begin{array}{cccc}
1 & -2 & -1 & -5 \\
0 & 1 & 2 & 2 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

So, $S=\left\{v_{1}, v_{2}, v_{4}\right\}$ is a basis of V.
(ii) $\operatorname{dim}(V)=|S|=3$.
(iii) Suppose $u=a v_{1}+b v_{2}+c v_{4}$, where a, b and c are scalars. So,

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & -2 & -5 & -6 \\
1 & 0 & -1 & 0 \\
1 & 0 & -1 & 0 \\
0 & 2 & 5 & 7
\end{array}\right] \xrightarrow[(-1) R_{13}]{(-1)_{12}}\left[\begin{array}{ccc}
1 & -2 & -5 \\
0 & 2 & 4 \\
0 \\
0 & 2 & 4 \\
6 \\
0 & 2 & 5
\end{array}\right]} \\
& \xrightarrow[R_{34}]{\frac{1}{2} R_{2}}\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow[(-1) R_{24}]{\substack{1 R_{21} \\
(-1) R_{23}}}\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 2 & 4 & 6 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \\
& \Rightarrow a=b=c=1
\end{aligned}
$$

So, $u \in V$.
Q4: Let $W=\left\{(a, 0) \in \mathbb{R}^{2}: a \in \mathbb{R}\right\}$. Show that W is a subspace of \mathbb{R}^{2}. (3 marks)
Answer: 1- If $a=0$, then $(0,0) \in W$. So $W \neq \emptyset$.
2- Take $u=\left(a_{1}, 0\right), v=\left(a_{2}, 0\right) \in W$. Now, $u+v=\left(a_{1}+a_{2}, 0\right)$. So $u+v \in W$.
3 - Take $u=(a, 0) \in W \& k \in \mathbb{R}$. Now, $k u=(k a, k 0)=(k a, 0)$. So $k u \in W$.
1,2 and 3 imply that W is a subspace of \mathbb{R}^{2}.
Q5: Let $B=\{(1,0),(1,1)\}$ and $B^{\prime}=\{u, v\}$ be two bases of \mathbb{R}^{2}. If the transition matrix from B^{\prime} to B is $\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$, then find u. (2 marks).
Answer:

$$
\begin{aligned}
& P_{B^{\prime} \rightarrow B}=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]=\left[\begin{array}{lll}
{[u]_{B}} & \mid[v]_{B}
\end{array}\right] \\
& \Rightarrow[u]_{B}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& \Rightarrow u=(1)(1,0)+(2)(1,1)=(1,0)+(2,2)=(3,2)
\end{aligned}
$$

Q6: Let $A=\left[\begin{array}{ccc}1 & a & b \\ 0 & -1 & c \\ 0 & 0 & 0\end{array}\right]$, where a, b and c are real numbers.
(i) Show that A is diagonalizable. (3 marks)
(ii) If P is the matrix that diagonalizes A, then find the product $P^{-1} A P$. (1 mark)
(iii) If $\mathrm{x}=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]^{\top}$ is an eigenvector of A , then find the value of $a \cdot$ (2 marks)

Answer: (i) A is an upper triangular. So, the eigenvalues are 1,-1 and 0 . Since they are distinct, A is diagonalizable.
(ii) $\mathrm{P}^{-1} \mathrm{AP}=D=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right]$ (the arrangement of the entries in the main diagonal is not important).
(iii) $\lambda x=A x$. So,

$$
\left[\begin{array}{l}
0 \\
\lambda \\
0
\end{array}\right]=\lambda\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{ccc}
1 & a & b \\
0 & -1 & c \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
a \\
-1 \\
0
\end{array}\right]
$$

So, $a=0$.
Q7: Let \mathbb{R}^{3} be the Euclidean inner product space. Apply the Gram-Schmidt process to transform the following basis $\left\{\mathrm{u}_{1}=(0,1,-1), \mathrm{u}_{2}=(0,4,2), \mathrm{u}_{3}=(1,0,0)\right\}$ into an orthonormal basis. (5 marks)
Answer:

$$
\begin{aligned}
& u_{1}=(0,1,-1), u_{2}=(0,4,2), u_{3}=(1,0,0), \\
& v_{1}=u_{1}=(0,1,-1) \\
& v_{2}=u_{2}-\frac{\left\langle u_{2}, v_{1}>\right.}{\left\|v_{1}\right\|^{2}} v_{1} \\
& =(0,4,2)-\frac{\langle(0,4,2),(0,1,-1)>}{\|(0,1,-1)\|^{2}}(0,1,-1)=(0,4,2)-\frac{2}{2}(0,1,-1) \\
& =(0,4,2)-(0,1,-1)=(0,3,3) \\
& v_{3}=u_{3}-\frac{\left\langle u_{3}, v_{2}>\right.}{\left\|v_{2}\right\|^{2}} v_{2}-\frac{\left\langle u_{3}, v_{1}>\right.}{\left\|v_{1}\right\|^{2}} v_{1} \\
& =(1,0,0)-\frac{\langle(1,0,0),(0,1,-1)>}{\|(0,1,-1)\|^{2}}(0,1,-1)-\frac{<(1,0,0),(0,3,3)>}{\|(0,3,3)\|^{2}}(0,3,3) \\
& =(1,0,0)-\frac{0}{2}(0,1,-1)-\frac{0}{18}(0,3,3)=(1,0,0) \\
& w_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}=\frac{1}{\sqrt{2}}(0,1,-1) \\
& w_{2}=\frac{v_{2}}{\left\|v_{2}\right\|}=\frac{1}{\sqrt{18}}(0,3,3)=\frac{1}{3 \sqrt{2}}(0,3,3)=\frac{1}{\sqrt{2}}(0,1,1) \\
& w_{3}=\frac{v_{3}}{\left\|v_{3}\right\|}=(1,0,0)
\end{aligned}
$$

Q8: Let M_{22} be the vector space of square matrices of order 2 , and let $T: M_{22} \rightarrow \mathbb{R}$ be the function defined by $T\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=a$ for all $a, b, c, d \in \mathbb{R}$. Show that:
(i) T is a linear transformation. (2 marks)
(ii) Find a basis for $\operatorname{ker}(\mathrm{T})$. (3 marks)
(iii) Find $[T]_{B^{\prime}, B}$ where B and B^{\prime} are the standard bases of M_{22} and \mathbb{R}, respectively. (2 marks)
(iv) Find $\operatorname{rank}(T)$. (1 mark)

Answer: For all $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], B=\left[\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right] \in \mathrm{M}_{22}, k \in \mathbb{R}$:
(i) $1-\mathrm{T}(\mathrm{A}+\mathrm{B})=T\left[\begin{array}{ll}a+a^{\prime} & b+b^{\prime} \\ c+c^{\prime} & d+d^{\prime}\end{array}\right]=a+a^{\prime}=\mathrm{T}(\mathrm{A})+\mathrm{T}(\mathrm{B})$
$2-\mathrm{T}(k \mathrm{~A})=T\left[\begin{array}{ll}k a & k b \\ k c & k d\end{array}\right]=k a=k \mathrm{~T}(\mathrm{~A})$
So T is linear.
(ii) $\left.\left.\operatorname{ker}(\mathrm{T})=\left\{\mathrm{A} \in \mathrm{M}_{22} \mid \mathrm{T}(\mathrm{A})=0\right\}=\left\{\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathrm{M}_{22} \right\rvert\, a=0\right\}=\left\{\left.\left[\begin{array}{ll}0 & b \\ c & d\end{array}\right] \in \mathrm{M}_{22} \right\rvert\, b, c, d \in \mathbb{R}\right\}$

$$
=\left\{\left.b\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+c\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+d\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \right\rvert\, b, c, d \in \mathbb{R}\right\}
$$

So, the set $S=\left\{\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$ spans $\operatorname{ker}(\mathrm{T})$. Observe that

$$
b\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+c\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+d\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

implies that

$$
\left[\begin{array}{ll}
0 & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

and hence $\mathrm{b}=\mathrm{c}=\mathrm{d}=0$. So, S is linearly independent also. Thus, S is a basis of $\operatorname{ker}(\mathrm{T})$.
(iii) $T\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\right)=1, T\left(\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\right)=0, T\left(\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]\right)=0$ and $T\left(\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right)=0$.

Now,
$\left[T\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\right)\right]_{B}=1,\left[T\left(\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\right)\right]_{B}=0,\left[T\left(\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]\right)\right]_{B}=0,\left[T\left(\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right)\right]_{B}=0 . \quad$ Therefore,
$[T]_{B^{\prime}, B}=\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]$.
(iv) Since $\operatorname{dim}(\operatorname{ker}(\mathrm{T}))=3$, so nullity $(\mathrm{T})=3$ and hence $\operatorname{rank}(\mathrm{T})=\operatorname{dim}\left(\mathrm{M}_{22}\right)$-nullity $(\mathrm{T})=4-3=1$.

Q9: (i) If $B=\{u, v, w\}$ is a basis of a vector space V, then find the coordinate vector $(v)_{B}$.
(1 mark)
Answer: As $v=0 u+1 v+0 w$ and writing a vector as a linear combination of the vectors in B is unique, so $(v)_{B}=(0,1,0)$
(ii) If u and v are orthogonal vectors in an inner product space such that $\|u\|=8$ and $\|v\|=6$, then find $\|\mathrm{u}+\mathrm{v}\|$. (1 mark)
Answer: As u and v are orthogonal, so $\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}=64+36=100$. So $\|u+v\|=10$.
(iii) If B is a 5×7 matrix with nullity $(B)=3$, then find $\operatorname{rank}\left(B^{\top}\right)$. (1 mark)

Answer: $\operatorname{rank}\left(B^{\top}\right)=\operatorname{rank}(B)=7-\operatorname{nullity}(B)=7-3=4$
(iv) Show that if A is a diagonalizable matrix of order n such that $A P=P A$, where P is the matrix that diagonalizes A, then A is a diagonal matrix. (1 mark)
Answer: Since A is diagonalizable, we have that $P^{-1} A P$ is a diagonal matrix. But we have that $A P=P A$. So, $P^{-1} A P=P^{-1}(A P)=P^{-1}(P A)=\left(P^{-1} P\right) A=I A=A$. So, A is diagonal.
(v) Suppose that A and B are invertible matrices of the same size. Show that if B is similar to A, then B^{-1} is similar to A^{-1}. (1 mark)
Answer: Since B is similar to A, so $B=P^{-1} A P$. Taking the inverse of the both sides, we have

$$
B^{-1}=P^{-1} A^{-1}\left(P^{-1}\right)^{-1}=P^{-1} A^{-1} P
$$

So, B^{-1} is similar to A^{-1}.

