Q1: (a) Find the inverse of $F=\left[\begin{array}{ccc}1 & 1 & 0 \\ 2 & 1 & -1 \\ 3 & 2 & 0\end{array}\right]$. Then find the cofactor C_{32}. (5 marks)
Answer: We have:

$$
\begin{aligned}
& {[F \mid I]=\left[\begin{array}{ccc|ccc}
1 & 1 & 0 & 1 & 0 & 0 \\
2 & 1 & -1 & 0 & 1 & 0 \\
3 & 2 & 0 & 0 & 0 & 1
\end{array}\right] \xrightarrow[-3 R_{13}]{-2 R_{12}}\left[\begin{array}{ccc|cc|}
1 & 1 & 0 & 1 & 0 \\
0 & 0 \\
0 & -1 & -1 & -2 & 1
\end{array}\right) 0} \\
& 0 \\
& 0
\end{aligned}-1
$$

Now:

$$
C_{32}=(-1)\left|\begin{array}{cc}
1 & 0 \\
2 & -1
\end{array}\right|=(-1)(-1)=1
$$

(b) Find $\operatorname{tr}(\mathrm{F})$ and $\mathrm{F}^{2}+(2 \mathrm{~F})^{\top}$. (4 marks)

Answer: $\operatorname{tr}(\mathrm{F})=1+1+0=2$ and $\mathrm{F}^{2}+(2 \mathrm{~F})^{\top}=$

$$
\begin{aligned}
& F^{2}+(2 F)^{T}=\left[\begin{array}{ccc}
1 & 1 & 0 \\
2 & 1 & -1 \\
3 & 2 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 0 \\
2 & 1 & -1 \\
3 & 2 & 0
\end{array}\right]+2\left(\left[\begin{array}{ccc}
1 & 1 & 0 \\
2 & 1 & -1 \\
3 & 2 & 0
\end{array}\right]\right)^{T} \\
& =\left[\begin{array}{ccc}
3 & 2 & -1 \\
1 & 1 & -1 \\
7 & 5 & -2
\end{array}\right]+2\left[\begin{array}{ccc}
1 & 2 & 3 \\
1 & 1 & 2 \\
0 & -1 & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
3 & 2 & -1 \\
1 & 1 & -1 \\
7 & 5 & -2
\end{array}\right]+\left[\begin{array}{ccc}
2 & 4 & 6 \\
2 & 2 & 4 \\
0 & -2 & 0
\end{array}\right]=\left[\begin{array}{ccc}
5 & 6 & 5 \\
3 & 3 & 3 \\
7 & 3 & -2
\end{array}\right]
\end{aligned}
$$

Q2: Solve the following linear system By Gauss-Jordan Elimination: (5 marks)

$$
\begin{aligned}
& 2 x_{1}+4 x_{2}-2 x_{3}=4 \\
& x_{1}+3 x_{2}+3 x_{3}=2 \\
& x_{1}+3 x_{2}+5 x_{3}=4
\end{aligned}
$$

Answer: We will solve the system by reducing the augmented matrix of the system in the reduced row echelon form (R.R.E.F.) and then solving the corresponding system of equations:

$$
\begin{aligned}
& {[A \mid b]=\left[\begin{array}{lll|l}
2 & 4 & -2 & 4 \\
1 & 3 & 3 & 2 \\
1 & 3 & 5 & 4
\end{array}\right] \xrightarrow{\frac{1}{2} R_{1}}\left[\begin{array}{ccc|c}
1 & 2 & -1 & 2 \\
1 & 3 & 3 & 2 \\
1 & 3 & 5 & 4
\end{array}\right]} \\
& \xrightarrow[(-1) R_{13}]{(-1) R_{12}}\left[\begin{array}{rrr|r}
1 & 2 & -1 & 2 \\
0 & 1 & 4 & 0 \\
0 & 1 & 6 & 2
\end{array}\right] \xrightarrow[(-1) R_{23}]{(-2) R_{21}}\left[\begin{array}{ccc|c}
1 & 0 & -9 & 2 \\
0 & 1 & 4 & 0 \\
0 & 0 & 2 & 2
\end{array}\right] \\
& \xrightarrow[2]{\frac{1}{2} R_{3}}\left[\begin{array}{rrr|r}
1 & 0 & -9 & 2 \\
0 & 1 & 4 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \xrightarrow[(-4) R_{32}]{(9) R_{31}}\left[\begin{array}{ccc|c}
1 & 0 & 0 & 11 \\
0 & 1 & 0 & -4 \\
0 & 0 & 1 & 1
\end{array}\right] \\
& \Rightarrow\left(x_{1}, x_{2}, x_{3}\right)=(11,-4,1)
\end{aligned}
$$

Q3: Let V be any nonempty set which has two operations are defined: addition and scalar multiplication. State the 10 axioms that should be satisfied by all scalars and all objects in V that make V a vector space. (5 marks)
Answer: For all $u, v, w \in V$ and $k, m \in \mathbb{R}$:
1- $u+v \in \mathbb{R}$
2- $u+v=v+u$
3- $u+(v+w)=(u+v)+w$
4- there is a zero vector 0 in v such that $u+0=u$ for all $u \in V$
5 - for each vector u in V, there is a negative vector $-u$ such $u+(-u)=0$
6- kueV
7- $k(u+v)=k u+k v$
8- (k+m)u=ku+mu
9- $\mathrm{K}(\mathrm{mu})=(\mathrm{km}) \mathrm{u}$
$10-1 u=u$

Q4: Let $V=M_{22}$ and $W=\left\{A \in M_{22} \mid \operatorname{tr}(A)=0\right\}$. Prove that W is a subspace of V. (3 marks)

Answer: For all $\mathrm{A}=\left[\begin{array}{cc}a & a^{\prime} \\ a^{\prime \prime} & a^{\prime \prime \prime}\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}b & b^{\prime} \\ b^{\prime \prime} & b^{\prime \prime \prime}\end{array}\right] \in \mathrm{W}$ and $\mathrm{k} \in \mathbb{R}$:
$1-\mathrm{W}$ is not empty since $\operatorname{tr}(0)=0$. Hence $0 \in \mathrm{~W}$

2- $\operatorname{tr}(\mathrm{A}+\mathrm{B})=\operatorname{tr}\left(\left[\begin{array}{cc}a+b & a^{\prime}+b^{\prime} \\ a^{\prime \prime}+b^{\prime \prime} & a^{\prime \prime \prime}+b^{\prime \prime \prime}\end{array}\right]\right)=a+b+a^{\prime \prime \prime}+b^{\prime \prime \prime}=a+a^{\prime \prime \prime}+b+b^{\prime \prime \prime}$ $=\operatorname{tr}(\mathrm{A})+\operatorname{tr}(\mathrm{B})=0+0=0$. So $\mathrm{A}+\mathrm{B} \in \mathrm{W}$.
3- $\operatorname{tr}(\mathrm{kA})=\operatorname{tr}\left(\left[\begin{array}{cc}k a & k a^{\prime} \\ k a^{\prime \prime} & k a^{\prime \prime \prime}\end{array}\right]\right)=k a+k a^{\prime \prime \prime}=k\left(a+a^{\prime \prime \prime}\right)=\mathrm{ktr}(\mathrm{A})=\mathrm{k} 0=0$. So $\mathrm{kA} \in \mathrm{W}$ 1,2 and 3 implies that W is a subspace of $\mathrm{V}=\mathrm{M}_{\mathrm{nn}}$.

Q5: Use the Wronskian to show that the vectors: $1, x$ and $\cos (x)$ are linearly independent in the vector space $C^{\infty}(-\infty, \infty)$. (3 marks)

Answer: As

$$
\begin{aligned}
& W(x)=\left|\begin{array}{ccc}
1 & x & \cos (x) \\
0 & 1 & -\sin (x) \\
0 & 0 & -\cos (x)
\end{array}\right|=-\cos (x) \\
& W(0)=-\cos (0)=-1 \neq 0
\end{aligned}
$$

So the vectors $1, x$ and $\cos (x)$ are linearly independent.
Q6: (a) Prove that if A has an inverse, then it is unique. (1 mark)

Answer: Suppose A has two inverses B and C. So

$$
B=B I=B(A C)=(B A) C=I C=C
$$

So the inverse is unique.
(b) Suppose A has an inverse. Show that $\operatorname{det}\left(A^{-1}\right)=(\operatorname{det}(A))^{-1} .(1$ mark $)$

Answer: Since $A A^{-1}=I$ and $\operatorname{det}(A) \neq 0$, So

$$
\begin{aligned}
& |A|\left|A^{-1}\right|=\left|A A^{-1}\right|=|I|=1 \\
& \Rightarrow\left|A^{-1}\right|=\frac{1}{|A|}=|A|^{-1}
\end{aligned}
$$

(c) Suppose S is a subset of the vector space \mathbb{R}^{5} and suppose S has seven different vectors. Is S linearly independent? Why? (1 mark)

Answer: No, since 7>5.

(d) If A is an invertible matrix of size 2×2 and $|A|=3$, then find $\left|3\left(\left(A^{\top}\right)^{2}\right)^{-1}\right|$.
(2 marks)
Answer:

$$
\begin{aligned}
& \left|3\left(\left(A^{T}\right)^{2}\right)^{-1}\right|=3^{2}\left|\left(\left(A^{T}\right)^{2}\right)^{-1}\right|=9 \times \frac{1}{\left|\left(A^{T}\right)^{2}\right|} \\
& =\frac{9}{\left|A^{T}\right|^{2}}=\frac{9}{|A|^{2}}=\frac{9}{3^{2}}=\frac{9}{9}=1
\end{aligned}
$$

