Q1: Let $F=\left[\begin{array}{ccc}1 & 1 & 0 \\ 2 & 1 & -1 \\ 3 & 2 & 0\end{array}\right]$. Find
(a) the inverse of F. Then deduce the inverse of (113F). (4 marks)
(b) the cofactor C_{32}. (2 marks)

Answer: (a) We have:

$$
\begin{aligned}
& {[F \mid I]=\left[\begin{array}{ccc|ccc}
1 & 1 & 0 & 1 & 0 & 0 \\
2 & 1 & -1 & 0 & 1 & 0 \\
3 & 2 & 0 & 0 & 0 & 1
\end{array}\right] \xrightarrow{-3 R_{13}}\left[\begin{array}{|cc|}
-2 R_{12}
\end{array}\left[\begin{array}{ccc|ccc}
1 & 1 & 0 & 1 & 0 & 0 \\
0 & -1 & -1 & -2 & 1 & 0 \\
0 & -1 & 0 & -3 & 0 & 1
\end{array}\right]\right.} \\
& \xrightarrow{1 R_{23}}\left[\begin{array}{ccc|ccc}
1 & 0 & -1 & -1 & 1 & 0 \\
0 & -1 & -1 & -2 & 1 & 0 \\
0 & 0 & 1 & -1 & -1 & 1
\end{array}\right] \xrightarrow[{ }_{1 R_{32}}]{-1 R_{23}}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & -2 & 0 & 1 \\
0 & -1 & 0 & -3 & 0 & 1 \\
0 & 0 & 1 & -1 & -1 & 1
\end{array}\right] \\
& \left(\begin{array}{ccc|ccc}
1 & 0 & 0 & -2 & 0 & 1 \\
0 & 1 & 0 & 3 & 0 & -1 \\
0 & 0 & 1 & -1 & -1 & 1
\end{array}\right]=\left[I \mid F^{-1}\right] \\
& (113 F)^{-1}=\frac{1}{113} F^{-1}=\frac{1}{113}\left[\begin{array}{ccc}
-2 & 0 & 1 \\
3 & 0 & -1 \\
-1 & -1 & 1
\end{array}\right]
\end{aligned}
$$

(b)

$$
C_{32}=(-1)\left|\begin{array}{cc}
1 & 0 \\
2 & -1
\end{array}\right|=(-1)(-1)=1
$$

Q2: Solve the following linear system By Gauss-Jordan Elimination:
(5 marks)

$$
\begin{aligned}
& 2 x_{1}+4 x_{2}-2 x_{3}=2 \\
& x_{1}+3 x_{2}+3 x_{3}=2 \\
& x_{1}+3 x_{2}+5 x_{3}=4
\end{aligned}
$$

Answer: We will solve the system by reducing the augmented matrix of the system in the reduced row echelon form (R.R.E.F.) and then solving the corresponding system of equations:

$$
\begin{aligned}
& {[A \mid b]=\left[\begin{array}{ccc|c}
2 & 4 & -2 & 2 \\
1 & 3 & 3 & 2 \\
1 & 3 & 5 & 4
\end{array}\right] \xrightarrow{\frac{1}{2} R_{1}}\left[\begin{array}{ccc|c}
1 & 2 & -1 \mid r \\
1 & 3 & 3 & 2 \\
1 & 3 & 5 & 4
\end{array}\right]} \\
& \xrightarrow[(-1) R_{13}]{(-1) R_{12}}\left[\begin{array}{ccc|c}
1 & 2 & -1 & 1 \\
0 & 1 & 4 & 1 \\
0 & 1 & 6 & 3
\end{array}\right] \xrightarrow[(-1) R_{23}]{(-2) R_{21}}\left[\begin{array}{ccc|c}
1 & 0 & -9 & -1 \\
0 & 1 & 4 & 1 \\
0 & 0 & 2 & 2
\end{array}\right] \\
& \xrightarrow{\frac{1}{2} R_{3}}\left[\begin{array}{ccc|c}
1 & 0 & -9 & -1 \\
0 & 1 & 4 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] \xrightarrow[(-4) R_{32}]{(9) R_{31}}\left[\begin{array}{ccc|c}
1 & 0 & 0 & 8 \\
0 & 1 & 0 & -3 \\
0 & 0 & 1 & 1
\end{array}\right] \\
& \Rightarrow\left(x_{1}, x_{2}, x_{3}\right)=(8,-3,1)
\end{aligned}
$$

Q3: Let V be any nonempty set which has two operations are defined: addition and scalar multiplication. State the 10 axioms that should be satisfied by all scalars and all objects in V that make V a vector space. (5 marks)
Answer: For all $u, v, w \in V$ and $k, m \in \mathbb{R}$:
1- $u+v \in V$
2- $u+v=v+u$
3- $u+(v+w)=(u+v)+w$
4- there is a zero vector 0 in v such that $u+0=u$ for all $u \in V$
5 - for each vector u in V , there is a negative vector -u such $\mathrm{u}+(-\mathrm{u})=0$
6- kueV
7- $k(u+v)=k u+k v$
8- ($k+m$) $u=k u+m u$
9- $\mathrm{k}(\mathrm{mu})=(\mathrm{km}) \mathrm{u}$
10-1u=u

Q4: Let $V=M_{22}$ and $W=\left\{A \in M_{22} \mid \operatorname{det}(A)=0\right\}$. Show that W is a not subspace of V. (2 marks)

Answer: Let $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right]$. Then $|A|=|B|=0$ and $A, B \in W$. Now, $A+B=\left[\begin{array}{ll}2 & 3 \\ 1 & 1\end{array}\right]$ and $|A+B|=2-3=-1 \neq 0$. So, $A+B \notin W$ and W is a not subspace of V.

Q5: Use the Wronskian to show that the vectors: $1, \mathrm{x}$ and $\cos (\mathrm{x})$ are linearly independent in the vector space $\mathrm{C}^{\infty}(-\infty, \infty)$. (3 marks)

$$
\begin{aligned}
& W(x)=\left|\begin{array}{ccc}
1 & x & \cos (x) \\
0 & 1 & -\sin (x) \\
0 & 0 & -\cos (x)
\end{array}\right|=-\cos (x) \\
& W(0)=-\cos (0)=-1 \neq 0
\end{aligned}
$$

So the vectors $1, \mathrm{x}$ and $\cos (\mathrm{x})$ are linearly independent.
Q6: (a) Prove that if A has an inverse, then it is unique. (2 marks)

Answer: Suppose A has two inverses B and C. So

$$
B=B I=B(A C)=(B A) C=I C=C
$$

So the inverse is unique.
(b) Suppose A has an inverse. Show that $\operatorname{det}\left(A^{-1}\right)=(\operatorname{det}(A))^{-1} .(2$ marks $)$

Answer: Since $A A^{-1}=I$ and $\operatorname{det}(A) \neq 0$, So

$$
\begin{aligned}
& |A|\left|A^{-1}\right|=\left|A A^{-1}\right|=|I|=1 \\
& \Rightarrow\left|A^{-1}\right|=\frac{1}{|A|}=|A|^{-1}
\end{aligned}
$$

(c) Suppose S is a subset of the vector space P_{5} and suppose S has five different vectors. Is S a basis of P_{5} ? Why? (1 mark)

Answer: No, since $\operatorname{dim}\left(\mathrm{P}_{5}\right)=6>5$.
(d) If A is an invertible matrix of size 2×2 and $|A|=3$, then find $\left|3\left(\left(A^{\top}\right)^{2}\right)^{-1}\right|$.
(2 marks)

Answer:

$$
\begin{aligned}
& \left|3\left(\left(A^{T}\right)^{2}\right)^{-1}\right|=3^{2}\left|\left(\left(A^{T}\right)^{2}\right)^{-1}\right|=9 \times \frac{1}{\left|\left(A^{T}\right)^{2}\right|} \\
& =\frac{9}{\left|A^{T}\right|^{2}}=\frac{9}{|A|^{2}}=\frac{9}{3^{2}}=\frac{9}{9}=1
\end{aligned}
$$

(e) If the general solution of a nonhomogeneous linear system is $\{(2 r-s+1, r, s, 5)\}$, then find the general solution of the corresponding homogeneous linear system. (2 marks)

Answer: $S . S=\{(2 r-s, r, s, 0)\}$

