Q1: If $A=\left[\begin{array}{cc}2 & 3 \\ 1 & -1\end{array}\right], B=\left[\begin{array}{ccc}2 & -5 & 3 \\ 2 & 3 & 0\end{array}\right]$ and $C=\left[\begin{array}{cc}2 & 9 \\ 3 & 4 \\ 0 & -1\end{array}\right]$, then find the following:
(a) $\mathrm{B}+3 \mathrm{C}^{\top}$ (2 marks)
(b) $\mathrm{BC}+10 \mathrm{I}_{2}$ (2 marks)
(c) $\operatorname{tr}\left(\mathrm{A}^{2}\right)(2$ marks $)$
(d) $\operatorname{adj}(A)$ in details (2 marks)

Q2: Put the following matrix in the reduced row echelon form (R.R.E.F.):
(4 marks)

$$
A=\left[\begin{array}{cccc}
2 & 4 & 2 & 6 \\
3 & 1 & -2 & 4 \\
4 & 3 & 1 & 11
\end{array}\right]
$$

Q3: Find the inverse of the following matrix by using elementary row operations and then find its determinant: (5 marks)

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 3 & 3 & 4 \\
1 & 2 & 4 & 4 \\
1 & 2 & 3 & 5
\end{array}\right]
$$

Q4: Solve the following linear system By Gauss-Jordan Elimination: (4 marks)

$$
\begin{aligned}
& 2 x_{1}+4 x_{2}-2 x_{3}=4 \\
& x_{1}+3 x_{2}+3 x_{3}=2 \\
& x_{1}+3 x_{2}+5 x_{3}=4
\end{aligned}
$$

Q5: (a) Prove that if a square matrix A has a row of zeros, then $|A|=0$.
(1 mark)
(b) Prove that if A is an invertible symmetric matrix, then A^{-1} is symmetric.
(1 mark)
(c) If A is an invertible matrix of size $n \times n$, then find:
(i) $\operatorname{det}(B)$, where B is the reduced row echelon form (R.R.E.F.) of A.
(ii) the solution of the linear system $A x=0$.
(2 marks)

Solutions of the first mid-term exam

240 Math

Q1(a):

$$
\begin{aligned}
& B+3 C^{T}=\left[\begin{array}{ccc}
2 & -5 & 3 \\
2 & 3 & 0
\end{array}\right]+3\left[\begin{array}{ccc}
2 & 3 & 0 \\
9 & 4 & -1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
2 & -5 & 3 \\
2 & 3 & 0
\end{array}\right]+\left[\begin{array}{ccc}
6 & 9 & 0 \\
27 & 12 & -3
\end{array}\right]=\left[\begin{array}{ccc}
8 & 4 & 3 \\
29 & 15 & -3
\end{array}\right]
\end{aligned}
$$

Q1(b):

$$
\begin{aligned}
& B C+10 I_{2}=\left[\begin{array}{ccc}
2 & -5 & 3 \\
2 & 3 & 0
\end{array}\right]\left[\begin{array}{cc}
2 & 9 \\
3 & 4 \\
0 & -1
\end{array}\right]+10\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
-11 & -5 \\
13 & 30
\end{array}\right]+\left[\begin{array}{cc}
10 & 0 \\
0 & 10
\end{array}\right]=\left[\begin{array}{cc}
-1 & -5 \\
13 & 40
\end{array}\right]
\end{aligned}
$$

Q1(c):

$$
\begin{aligned}
& \operatorname{tr}\left(A^{2}\right)=\operatorname{tr}(A A)=\operatorname{tr}\left(\left[\begin{array}{cc}
2 & 3 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
2 & 3 \\
1 & -1
\end{array}\right]\right) \\
& =\operatorname{tr}\left(\left[\begin{array}{ll}
7 & 3 \\
1 & 4
\end{array}\right]\right)=7+4=11
\end{aligned}
$$

Q1(d):
Adjoint A is equal to the transpose of the matrix of cofactors C from A, where

$$
C=\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right]
$$

Such that

$$
\begin{aligned}
& C_{11}=(-1)^{1+1} \operatorname{det}[-1]=(-1)^{2}(-1)=-1 \\
& C_{12}=(-1)^{1+2} \operatorname{det}[1]=(-1)^{3}(1)=-1 \\
& C_{21}=(-1)^{2+1} \operatorname{det}[3]=(-1)^{3}(3)=-3 \\
& C_{22}=(-1)^{2+2} \operatorname{det}[2]=(-1)^{4}(2)=2
\end{aligned}
$$

So

$$
C=\left[\begin{array}{cc}
-1 & -1 \\
-3 & 2
\end{array}\right]
$$

and then

$$
\operatorname{adj}(A)=C^{T}=\left[\begin{array}{cc}
-1 & -3 \\
-1 & 2
\end{array}\right]
$$

Q2:

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
2 & 4 & 2 & 6 \\
3 & 1 & -2 & 4 \\
4 & 3 & 1 & 11
\end{array}\right] \xrightarrow{\frac{1}{2} R_{1}}\left[\begin{array}{cccc}
1 & 2 & 1 & 3 \\
3 & 1 & -2 & 4 \\
4 & 3 & 1 & 11
\end{array}\right] \xrightarrow{-4 R_{13}}\left[\begin{array}{ccc}
-3 R_{12}
\end{array}\left[\begin{array}{cccc}
1 & 2 & 1 & 3 \\
0 & -5 & -5 & -5 \\
0 & -5 & -3 & -1
\end{array}\right]\right. \\
& \xrightarrow{-\frac{1}{5} R_{2}}\left[\begin{array}{cccc}
1 & 2 & 1 & 3 \\
0 & 1 & 1 & 1 \\
0 & -5 & -3 & -1
\end{array}\right] \xrightarrow{5 R_{23}}\left[\begin{array}{cccc}
1 & 2 & 1 & 3 \\
0 & 1 & 1 & 1 \\
0 & 0 & 2 & 4
\end{array}\right] \xrightarrow{-\frac{1}{2} R_{3}}\left[\begin{array}{cccc}
1 & 2 & 1 & 3 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 2
\end{array}\right] \\
& \xrightarrow[(-1) R_{32}]{(-1) R_{3 \mid}}\left[\begin{array}{cccc}
1 & 2 & 0 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 2
\end{array}\right] \xrightarrow{-2 R_{21}}\left[\begin{array}{cccc}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 2
\end{array}\right]
\end{aligned}
$$

The last matrix is the reduced row echelon form of A. Q3:

$$
\begin{aligned}
& {[A \mid I]=\left[\begin{array}{llll|llll}
1 & 2 & 3 & 4 & 1 & 0 & 0 & 0 \\
1 & 3 & 3 & 4 & 0 & 1 & 0 & 0 \\
1 & 2 & 4 & 4 & 0 & 0 & 1 & 0 \\
1 & 2 & 3 & 5 & 0 & 0 & 0 & 1
\end{array}\right] \xrightarrow[\substack{(-1) R_{14} \\
(-1) R_{13}}]{\substack{(-1) R_{12}}}\left[\begin{array}{llll|llll}
1 & 2 & 3 & 4 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 & 1
\end{array}\right]} \\
& \text { So } \xrightarrow[(-2) R_{21}]{ }\left[\begin{array}{cccc|cccc}
1 & 0 & 3 & 4 & 3 & -2 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 & 1
\end{array}\right] \xrightarrow{(-3) R_{31}}\left[\begin{array}{cccc|cccc}
1 & 0 & 0 & 4 & 6 & -2 & -3 & 0 \\
0 & 1 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 & 1
\end{array}\right] \\
& \xrightarrow{(-4) R_{41}}\left[\begin{array}{cccc|cccc}
1 & 0 & 3 & 0 & 10 & -2 & -3 & -4 \\
0 & 1 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 & 1
\end{array}\right]=\left[I \mid A^{-1}\right] \\
& A^{-1}=\left[\begin{array}{cccc}
10 & -2 & -3 & -4 \\
-1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Now,

$$
\operatorname{det}(A)=\left|\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 3 & 3 & 4 \\
1 & 2 & 4 & 4 \\
1 & 2 & 3 & 5
\end{array}\right| \underset{(-1) R_{14}}{(-1) R_{12}}\left|\begin{array}{llll}
1 & 2 & 3 & 4 \\
(-1) R_{13} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right|=1(1)(1)(1)=1
$$

Q4:
We will solve the system by reducing the augmented matrix of the system in the reduced row echelon form (R.R.E.F.) and then solving the corresponding system of equations:

$$
\begin{aligned}
& {[A \mid b]=\left[\begin{array}{ccc|c}
2 & 4 & -2 & 4 \\
1 & 3 & 3 & 2 \\
1 & 3 & 5 & 4
\end{array}\right] \xrightarrow{\frac{1}{2} R_{1}}\left[\begin{array}{ccc|c}
1 & 2 & -1 & 2 \\
1 & 3 & 3 & 2 \\
1 & 3 & 5 & 4
\end{array}\right]} \\
& \xrightarrow[(-1) R_{13}]{(-1) R_{12}}\left[\begin{array}{ccc|c}
1 & 2 & -1 & 2 \\
0 & 1 & 4 & 0 \\
0 & 1 & 6 & 2
\end{array}\right] \xrightarrow{(-1) R_{23}}\left[\begin{array}{ccc|c}
1 & 2 & -1 & 2 \\
0 & 1 & 4 & 0 \\
0 & 0 & 2 & 2
\end{array}\right] \\
& \xrightarrow{\frac{1}{2} R_{3}}\left[\begin{array}{ccc|c}
1 & 2 & -1 & 2 \\
0 & 1 & 4 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \xrightarrow[(1) R_{31}]{(-4) R_{21}}\left[\begin{array}{ccc|c}
1 & 2 & 0 & 3 \\
0 & 1 & 0 & -4 \\
0 & 0 & 1 & 1
\end{array}\right] \\
& \xrightarrow{(-2) R_{21}}\left[\begin{array}{lll|l}
1 & 0 & 0 & 11 \\
0 & 1 & 0 & -4 \\
0 & 0 & 1 & 1
\end{array}\right] \\
& \Rightarrow x_{1}=11, x_{2}=-4, x_{3}=1
\end{aligned}
$$

Q5(a):
Suppose A is of order n and the row of zeros is the row number i. Computing the determinant using the cofactor expansion, we get that:

$$
\operatorname{det}(A)=\sum_{j=1}^{n} a_{i j} C_{i j}=\sum_{j=1}^{n} 0 C_{i j}=0
$$

Q5(b):
From a theorem, we have that

$$
\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}
$$

But A is symmetric, so

$$
\left(A^{T}\right)^{-1}=(A)^{-1}
$$

Hence

$$
\left(A^{-1}\right)^{T}=(A)^{-1}
$$

Q5(c): (i)

Since A is invertible, we have from Equivalence Theorem that $B=I_{n}$. Hence, $\operatorname{det}(B)=1$.

Q5(c): (ii)
Since A is invertible, we have from Equivalence Theorem that $x=0$.

OR

Since A is invertible, we have that $x=A^{-1} 0=0$

