Q1: Let V be any nonempty set which has two operations are defined: addition and scalar multiplication. State the 10 axioms that should be satisfied by all scalars and all objects in V that make V a vector space. (5 marks)
A1: For all $u, v, w \in V$ and $k, m \in \mathbb{R}$:
1- $u+v \in \mathbb{R}$
2- $u+v=v+u$
3- $u+(v+w)=(u+v)+w$
4- there is a zero vector 0 in v such that $u+0=u$ for all $u \in V$
5- for each vector u in V, there is a negative vector $-u$ such $u+(-u)=0$
6- kueV
7- $k(u+v)=k u+k v$
8- $(k+m) u=k u+m u$
9- $K(m u)=(k m) u$
10- $\quad 1 u=u$

Q2: Let $\mathrm{V}=\mathrm{M}_{22}$ and $\mathrm{W}=\left\{\mathrm{A} \in \mathrm{M}_{22} \mid \operatorname{tr}(\mathrm{A})=0\right\}$. Prove that W is a subspace of V . (3 marks)

A2: For all $\mathrm{A}=\left[\begin{array}{cc}a & a^{\prime} \\ a^{\prime \prime} & a^{\prime \prime \prime}\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}b & b^{\prime} \\ b^{\prime \prime} & b^{\prime \prime \prime}\end{array}\right] \in \mathrm{W}$ and $\mathrm{k} \in \mathbb{R}$:
1- W is not empty since $\operatorname{tr}(0)=0$. Hence $0 \in W$
2- $\operatorname{tr}(\mathrm{A}+\mathrm{B})=\operatorname{tr}\left(\left[\begin{array}{cc}a+b & a^{\prime}+b^{\prime} \\ a^{\prime \prime}+b^{\prime \prime} & a^{\prime \prime \prime}+b^{\prime \prime \prime}\end{array}\right]\right)=a+b+a^{\prime \prime \prime}+b^{\prime \prime \prime}=a+a^{\prime \prime \prime}+b+b^{\prime \prime \prime}$ $=\operatorname{tr}(A)+\operatorname{tr}(B)=0+0=0$. So $A+B \in W$.
3- $\operatorname{tr}(\mathrm{kA})=\operatorname{tr}\left(\left[\begin{array}{cc}k a & k a^{\prime} \\ k a^{\prime \prime} & k a^{\prime \prime \prime}\end{array}\right]\right)=k a+k a^{\prime \prime \prime}=k\left(a+a^{\prime \prime \prime}\right)=k \operatorname{tr}(\mathrm{~A})=\mathrm{k} 0=0$. So $\mathrm{kA} \in \mathrm{W}$ 1,2 and 3 implies that W is a subspace of $\mathrm{V}=\mathrm{M}_{\mathrm{n}}$.

Q3: Use the Wronskian to show that $x \sin (x)$ and $x \cos (x)$ are linearly independent in the vector space $\mathrm{C}^{\infty}(-\infty, \infty)$. (3 marks)

A3:

$$
\begin{aligned}
& W(x)=\left|\begin{array}{cc}
x \sin (x) & x \cos (x) \\
\sin (x)+x \cos (x) & \cos (x)-x \sin (x)
\end{array}\right| \\
& =x \sin (x) \cos (x)-x^{2} \sin ^{2}(x)-x \cos (x) \sin (x)-x^{2} \cos ^{2}(x) \\
& =-x^{2} \sin ^{2}(x)-x^{2} \cos ^{2}(x)=-x^{2}\left(\sin ^{2}(x)+\cos ^{2}(x)\right) \\
& =-x^{2}(1)=-x^{2}
\end{aligned}
$$

Since $W(1)=-1 \neq 0$, so $x \sin (x)$ and $x \cos (x)$ are linearly independent.

Q4: show that the vectors ($1,1,2$), ($2,1,0$), ($1,1,0$) form a basis for \mathbb{R}^{3}. (3 marks) A4:

$$
\left|\begin{array}{lll}
1 & 2 & 1 \\
1 & 1 & 1 \\
2 & 0 & 0
\end{array}\right|=2\left|\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right|=2(2-1)=2 \neq 0
$$

So the vectors ($1,1,2$), ($2,1,0$), $(1,1,0)$ form a basis for \mathbb{R}^{3}
Q5: Let $B=\{(1,2),(2,5)\}$ and $B^{\prime}=\{(1,1),(2,0)\}$ be two bases of \mathbb{R}^{2}. Find the transition matrix from B^{\prime} to B . (3 marks).
A5:

$$
\left.\begin{array}{l}
{\left[B \mid B^{\prime}\right]=\left[\begin{array}{ll|l}
1 & 2 & 1 \\
2 & 2 \\
2 & 5 & 1
\end{array} 0\right.}
\end{array}\right] \xrightarrow{(-2) R_{12}}\left[\begin{array}{cc|cc}
1 & 2 & 1 & 2 \\
0 & 1 & -1 & -4
\end{array}\right] .
$$

Q6: Find a basis for the column space of the matrix:

$$
A=\left[\begin{array}{cccc}
1 & 2 & 6 & -1 \\
2 & 4 & 4 & 6 \\
3 & 6 & 10 & 5
\end{array}\right]
$$

and deduce nullity $\left(\mathrm{A}^{\top}\right)$ without solving any linear system. (4 marks) A6:

$$
\left.\begin{array}{l}
A=\left[\begin{array}{cccc}
1 & 2 & 6 & -1 \\
2 & 4 & 4 & 6 \\
3 & 6 & 10 & 5
\end{array}\right] \xrightarrow[(-3) R_{13}]{\substack{(-2) R_{12}}}\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 \\
0 & 0 & -8 \\
8 \\
0 & 0 & -8
\end{array}\right) 8
\end{array}\right]-\left[\begin{array}{cccc}
1 & 2 & 1 & 2 \\
0 & 0 & -8 & 8 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{\left.(-1) R_{23}\right) R_{2}}\left[\begin{array}{cccc}
1 & 2 & 1 & 2 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Using the leading ones, $\left.\left\{\begin{array}{lll}1 & 2 & 3\end{array}\right]^{\top},\left[\begin{array}{lll}6 & 4 & 10\end{array}\right]^{\top}\right\}$ is a basis of $\operatorname{col}(A)$.
Now, $\operatorname{rank}(A)+n u l l i t y\left(A^{\top}\right)=m$
So nullity $\left(A^{\top}\right)=m-\operatorname{rank}(A)=3-2=1$

Q7:(a) Let $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ be a basis for a vector space \mathbf{V}. Suppose \mathbf{u} is a vector in \mathbf{V} such that
$\mathbf{u}=\left|A_{1}\right| \mathbf{v}_{\mathbf{1}}+2\left|A_{2}\right| \mathbf{v}_{\mathbf{2}}+3\left|A_{3}\right| \mathbf{v}_{\mathbf{3}}+\ldots+n\left|A_{n}\right| \mathbf{v}_{\mathbf{n}}$
where, A_{i} is a matrix of order 2 for all $i \in\{1,2, \ldots, n\}$. Find ($\left.u\right)_{s}$ (1 mark)
$A 7(a):(u)_{s}=\left(\left|A_{1}\right|, 2\left|A_{2}\right|, 3\left|A_{3}\right|, \ldots, n\left|A_{n}\right|\right)$
(b) If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ is a basis for a vector space \mathbf{V}, then prove that every vector \mathbf{v} in \mathbf{V} can be expressed in the form $\mathbf{v}=c_{1} \mathbf{v}_{\mathbf{1}}+\mathrm{c}_{2} \mathbf{v}_{\mathbf{2}}+\ldots+\mathrm{c}_{\mathrm{n}} \mathbf{v}_{\mathbf{n}}$ in exactly one way, where $c_{1}, c_{2}, \ldots, c_{n}$ are real numbers. (2 marks)

A5(b): Suppose v $\in V$ has two expressions:
$v=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}$ and $v=k_{1} v_{1}+k_{2} v_{2}+\cdots+k_{n} v_{n}$, so
$0=\left(c_{1}-k_{1}\right) v_{1}+\left(c_{2}-k_{2}\right) v_{2}+\cdots+\left(c_{n}-k_{n}\right) v_{n}$
But $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis, so it is linearly independent. Thus,
$c_{1}-k_{1}=c_{2}-k_{2}=\ldots=c_{n}-k_{n}=0$ and hence $c_{i}=k_{i}$ for all $i \in\{1,2, \ldots, n\}$ and hence v has exactly one expression.
(c) Suppose S is a subset of the vector space P_{5} and suppose S has seven different vectors. Is S linearly independent? Why? (1 mark)

No, since $7>6=\operatorname{dim}\left(P_{5}\right)$

