Second Semester Second Exam King Saud University

(without calculators) Time allowed: 1 h and 30 m College of Science

Thursday 11-10-1443 240 Math Math. Department

Q1: (a) Let $V=M_{nn}$ and W is the set of all symmetric matrices of degree n. Prove that W is a subspace of V. (3 marks)

A1(a): For all A,B \in W and k \in R:

- 1- W is not empty since $0^T=0$. Hence $0\in W$
- 2- $(A+B)^T = A^T + B^T = A + B$. So $A+B \in W$.
- 3- $(kA)^T = kA^T = kA$. So $kA \in W$ 1, 2 and 3 implies that W is a subspace of $V = M_{nn}$.
- **(b)** show that the vectors (1,1,2), (2,1,1), (1,1,0) form a basis for \mathbb{R}^3 . (3 marks)

A1(b):

$$\begin{vmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 2 & 1 & 0 \end{vmatrix} \xrightarrow{(-1)R_{12}} \begin{vmatrix} 1 & 2 & 1 \\ 0 & -1 & 0 \\ 0 & -3 & -2 \end{vmatrix} = 1(-1)(-2) = 2 \neq 0$$

So the vectors (1,1,2), (2,1,1), (1,1,0) form a basis for \mathbb{R}^3 .

Q2: (a) Use the Wronskian to show that the vectors 1, $\sin(x)$, $\cos(x)$ are linearly independent in the vector space $C^2(-\infty,\infty)$. (3 marks)

A2(a):

$$W(x) = \begin{vmatrix} 1 & \sin(x) & \cos(x) \\ 0 & \cos(x) & -\sin(x) \\ 0 & -\sin(x) & -\cos(x) \end{vmatrix} = -(\cos^{2}(x) + \sin^{2}(x)) = -1 \neq 0$$

So 1, sin(x), cos(x) are linearly independent.

(b) Let $B=\{(1,2),(2,5)\}$ and $B'=\{(1,1),(2,0)\}$ be two bases of \mathbb{R}^2 . Find the transition matrix from B' to B. (3 marks).

A2(b):

$$\begin{bmatrix} B \mid B ' \end{bmatrix} = \begin{bmatrix} 1 & 2 \mid 1 & 2 \\ 2 & 5 \mid 1 & 0 \end{bmatrix} \xrightarrow{(-2)R_{12}} \begin{bmatrix} 1 & 2 \mid 1 & 2 \\ 0 & 1 \mid -1 & -4 \end{bmatrix} \\
\xrightarrow{(-2)R_{21}} \begin{bmatrix} 1 & 0 \mid 3 & 10 \\ 0 & 1 \mid -1 & -4 \end{bmatrix} \\
= \begin{bmatrix} I \mid P_{B' \to B} \end{bmatrix} \\
P_{B' \to B} = \begin{bmatrix} 3 & 10 \\ -1 & -4 \end{bmatrix}$$

Q3: Find a basis for the column space of the matrix:

$$A = \begin{bmatrix} 1 & 2 & 6 & -1 \\ 2 & 4 & 4 & 6 \\ 3 & 6 & 10 & 5 \end{bmatrix}$$

and <u>deduce</u> nullity(A^T) without solving any linear system. (4 marks) A3:

$$A = \begin{bmatrix} 1 & 2 & 6 & -1 \\ 2 & 4 & 4 & 6 \\ 3 & 6 & 10 & 5 \end{bmatrix} \xrightarrow{(-2)R_{12}} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 0 & -8 & 8 \\ 0 & 0 & -8 & 8 \end{bmatrix}$$

$$\xrightarrow{(-1)R_{23}} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 0 & -8 & 8 \\ 0 & 0 & 0 & 0 \end{bmatrix}} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Using the leading ones, $\{[1 \ 2 \ 3]^T, [6 \ 4 \ 10]^T\}$ is a basis of col(A).

Now, rank(A)+nullity(A^{T})=m

So nullity(A^T)=m- rank(A)=3-2=1

Q4: Assume that the vector space \mathbb{R}^3 has the Euclidean inner product. Apply the Gram-Schmidt process to transform the following basis vectors (1,-2,0), (2,1,-1), (0,1,1) into an <u>orthonormal basis</u>. (5 marks)

A4: Let $v_1=(1,-2,0)$, $v_2=(2,1,-1)$, $v_3=(0,1,1)$.

Now define u_1 , u_2 and u_3 as follows:

$$u_{1} = v_{1} = (1, -2, 0)$$

$$u_{2} = v_{2} - \frac{\langle v_{2}, u_{1} \rangle}{\|u_{1}\|^{2}} u_{1} = (2, 1, -1) - 0 = (2, 1, -1)$$

$$u_{3} = v_{3} - \frac{\langle v_{3}, u_{2} \rangle}{\|u_{2}\|^{2}} u_{2} - \frac{\langle v_{3}, u_{1} \rangle}{\|u_{1}\|^{2}} u_{1}$$

$$= (0, 1, 1) - 0 - \frac{-2}{5} (1, -2, 0) = (\frac{2}{5}, \frac{1}{5}, 1)$$

$$w_{1} = \frac{u_{1}}{\|u_{1}\|} = \frac{1}{\sqrt{5}} (1, -2, 0)$$

$$w_{2} = \frac{u_{2}}{\|u_{2}\|} = \frac{1}{\sqrt{6}} (2, 1, -1)$$

$$w_{3} = \frac{u_{3}}{\|u_{3}\|} = \frac{\sqrt{5}}{\sqrt{6}} (\frac{2}{5}, \frac{1}{5}, 1)$$

So $\{w_1, w_2, w_3\}$ is the wanted orthonormal basis.

Q5:(a) If u and v are orthogonal vectors in an inner product space, then: $||u+v||^2 = ||u||^2 + ||v||^2$. (1 mark)

A5(a): As u and v are orthogonal, so $\langle u, v \rangle = 0$ and hence:

$$||u + v||^{2} = \langle u + v, u + v \rangle$$

$$= \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle$$

$$= \langle u, u \rangle + \langle v, v \rangle = ||u||^{2} + ||v||^{2}$$

(b) If $S=\{v_1,v_2,...,v_n\}$ is a basis for a vector space V, then prove that every vector v in V can be expressed in the form $v=c_1v_1+c_2v_2+...+c_nv_n$ in exactly one way, where c_1 , c_2 , ..., c_n are real numbers. (1 mark)

A5(b): Suppose v∈V has two expressions:

$$v=c_1v_1+c_2v_2+\cdots+c_nv_n$$
 and $v=k_1v_1+k_2v_2+\cdots+k_nv_n$, so

$$0 = (c_1-k_1)v_1 + (c_2-k_2)v_2 + \cdots + (c_n-k_n)v_n$$

But $S = \{v_1, v_2, \dots, v_n\}$ is a basis, so it is linearly independent. Thus,

 c_1 - k_1 = c_2 - k_2 =...= c_n - k_n =0 and hence c_i = k_i for all i \in {1,2,...,n} and hence v has exactly one expression.

(c) Assume that $S=\{v_1,v_2,v_3,v_4,v_5\}$ is an orthonormal set of P_4 . Is it a basis of P_4 ? Why? (1 mark)

A5(c): Yes, because any orthonormal set is linearly independent and dim(P_4)=5 which is equal to the number of vectors of S.

(d) Show that the function <,> defined by: <(x,y),(z,w)>=xz for all (x,y),(z,w) in \mathbb{R}^2 is **not** an inner product on \mathbb{R}^2 . (1 mark).

A5(d): <(0,1),(0,1)>=0, but $(0,1)\neq(0,0)$.