Q1: (a) Let $\mathrm{V}=\mathrm{M}_{\mathrm{n} n}$ and W is the set of all symmetric matrices of degree n . Prove that W is a subspace of V . (3 marks)
$A 1(a)$: For all $A, B \in W$ and $k \in \mathbb{R}$:
1- W is not empty since $0^{\top}=0$. Hence $0 \in W$
2- $(A+B)^{\top}=A^{\top}+B^{\top}=A+B$. So $A+B \in W$.
3- $(k A)^{\top}=k A^{\top}=k A$. So $k A \in W$
1,2 and 3 implies that W is a subspace of $V=M_{n n}$.
(b) show that the vectors $(1,1,2),(2,1,1),(1,1,0)$ form a basis for \mathbb{R}^{3}. (3 marks)

A1(b):

$$
\left.\left|\begin{array}{lll}
1 & 2 & 1 \\
1 & 1 & 1 \\
2 & 1 & 0
\end{array}\right| \begin{array}{|ccc}
(-1) R_{12} \\
(-2) R_{13} \\
1 & 2 & 1 \\
0 & -1 & 0 \\
0 & -3 & -2
\end{array} \right\rvert\,=1(-1)(-2)=2 \neq 0
$$

So the vectors $(1,1,2),(2,1,1),(1,1,0)$ form a basis for \mathbb{R}^{3}.
Q2: (a) Use the Wronskian to show that the vectors $1, \sin (x), \cos (x)$ are linearly independent in the vector space $\mathrm{C}^{2}(-\infty, \infty)$. (3 marks)

A2(a):

$$
\begin{aligned}
& W(x)=\left|\begin{array}{ccc}
1 & \sin (x) & \cos (x) \\
0 & \cos (x) & -\sin (x) \\
0 & -\sin (x) & -\cos (x)
\end{array}\right|= \\
& -\left(\cos ^{2}(x)+\sin ^{2}(x)\right)=-1 \neq 0
\end{aligned}
$$

So $1, \sin (x), \cos (x)$ are linearly independent.
(b) Let $B=\{(1,2),(2,5)\}$ and $B^{\prime}=\{(1,1),(2,0)\}$ be two bases of \mathbb{R}^{2}. Find the transition matrix from B^{\prime} to B. (3 marks).
A2(b):

$$
\left.\begin{array}{l}
{\left[B \mid B^{\prime}\right]=\left[\begin{array}{ll|l}
1 & 2 & 1 \\
2 & 2 \\
2 & 5 & 1
\end{array} 0\right.}
\end{array}\right] \xrightarrow{(-2) R_{12}}\left[\begin{array}{cc|cc}
1 & 2 & 1 & 2 \\
0 & 1 & -1 & -4
\end{array}\right], ~\left[\begin{array}{ll|l|}
1 & 0 & 3 \\
0 & 10 \\
0 & 1 & -1
\end{array}-4\right]\left[\begin{array}{l}
(-2) R_{21}
\end{array}\right]\left[\begin{array}{ll}
\left.1 \mid P_{B^{\prime} \rightarrow B}\right] \\
P_{B^{\prime} \rightarrow B}=\left[\begin{array}{cc}
3 & 10 \\
-1 & -4
\end{array}\right]
\end{array}\right.
$$

Q3: Find a basis for the column space of the matrix:

$$
A=\left[\begin{array}{cccc}
1 & 2 & 6 & -1 \\
2 & 4 & 4 & 6 \\
3 & 6 & 10 & 5
\end{array}\right]
$$

and deduce nullity $\left(\mathrm{A}^{\top}\right)$ without solving any linear system. (4 marks) A3:

$$
\left.\begin{array}{l}
A=\left[\begin{array}{cccc}
1 & 2 & 6 & -1 \\
2 & 4 & 4 & 6 \\
3 & 6 & 10 & 5
\end{array}\right] \xrightarrow[(-2) R_{13}]{\substack{(-2) R_{12}}}\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 \\
0 & 0 & -8 \\
8 \\
0 & 0 & -8
\end{array}\right) 8
\end{array}\right]-\left[\begin{array}{cccc}
1 & 2 & 1 & 2 \\
0 & 0 & -8 & 8 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow[(-1 / 8) R_{2}]{(-1) R_{23}}\left[\begin{array}{cccc}
1 & 2 & 1 & 2 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Using the leading ones, $\left.\left\{\begin{array}{lll}1 & 2 & 3\end{array}\right]^{\top},\left[\begin{array}{lll}6 & 4 & 10\end{array}\right]^{\top}\right\}$ is a basis of $\operatorname{col}(A)$.
Now, $\operatorname{rank}(A)+n u l l i t y\left(A^{\top}\right)=m$
So nullity $\left(A^{\top}\right)=m-\operatorname{rank}(A)=3-2=1$

Q4: Assume that the vector space \mathbb{R}^{3} has the Euclidean inner product. Apply the Gram-Schmidt process to transform the following basis vectors $(1,-2,0)$, $(2,1,-1),(0,1,1)$ into an orthonormal basis. (5 marks)
A4: Let $v_{1}=(1,-2,0), v_{2}=(2,1,-1), v_{3}=(0,1,1)$.
Now define u_{1}, u_{2} and u_{3} as follows:

$$
\begin{aligned}
& u_{1}=v_{1}=(1,-2,0) \\
& u_{2}=v_{2}-\frac{<v_{2}, u_{1}>}{\left\|u_{1}\right\|^{2}} u_{1}=(2,1,-1)-0=(2,1,-1) \\
& u_{3}=v_{3}-\frac{<v_{3}, u_{2}>}{\left\|u_{2}\right\|^{2}} u_{2}-\frac{<v_{3}, u_{1}>}{\left\|u_{1}\right\|^{2}} u_{1} \\
& =(0,1,1)-0-\frac{-2}{5}(1,-2,0)=\left(\frac{2}{5}, \frac{1}{5}, 1\right) \\
& w_{1}=\frac{u_{1}}{\left\|u_{1}\right\|}=\frac{1}{\sqrt{5}}(1,-2,0) \\
& w_{2}=\frac{u_{2}}{\left\|u_{2}\right\|}=\frac{1}{\sqrt{6}}(2,1,-1) \\
& w_{3}=\frac{u_{3}}{\left\|u_{3}\right\|}=\frac{\sqrt{5}}{\sqrt{6}}\left(\frac{2}{5}, \frac{1}{5}, 1\right)
\end{aligned}
$$

So $\left\{w_{1}, w_{2}, w_{3}\right\}$ is the wanted orthonormal basis.

Q5:(a) If u and v are orthogonal vectors in an inner product space, then:
$\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2} .(1$ mark $)$
A5(a): As u and v are orthogonal, so $\langle u, v\rangle=0$ and hence:

$$
\begin{aligned}
& \|u+v\|^{2}=<u+v, u+v> \\
& =<u, u>+<u, v>+<v, u>+<v, v> \\
& =<u, u>+<v, v>=\|u\|^{2}+\|v\|^{2}
\end{aligned}
$$

(b) If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ is a basis for a vector space \mathbf{V}, then prove that every vector \mathbf{v} in \mathbf{V} can be expressed in the form $\mathbf{v}=\mathrm{c}_{1} \mathbf{v}_{\mathbf{1}}+\mathrm{c}_{2} \mathbf{v}_{\mathbf{2}}+\ldots+\mathrm{c}_{\mathrm{n}} \mathbf{v}_{\mathbf{n}}$ in exactly one way, where $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{n}}$ are real numbers. (1 mark)

A5(b): Suppose veV has two expressions:
$v=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}$ and $v=k_{1} v_{1}+k_{2} v_{2}+\cdots+k_{n} v_{n}$, so
$0=\left(c_{1}-k_{1}\right) v_{1}+\left(c_{2}-k_{2}\right) v_{2}+\cdots+\left(c_{n}-k_{n}\right) v_{n}$
But $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis, so it is linearly independent. Thus,
$c_{1}-k_{1}=c_{2}-k_{2}=\ldots=c_{n}-k_{n}=0$ and hence $c_{i}=k_{i}$ for all $i \in\{1,2, \ldots, n\}$ and hence v has exactly one expression.
(c) Assume that $\mathrm{S}=\left\{\mathbf{v}_{1}, \mathbf{V}_{2}, \mathbf{v}_{\mathbf{3}}, \mathbf{v}_{4}, \mathbf{v}_{5}\right\}$ is an orthonormal set of P_{4}. Is it a basis of P_{4} ? Why? (1 mark)

A5(c): Yes, because any orthonormal set is linearly independent and $\operatorname{dim}\left(P_{4}\right)=5$ which is equal to the number of vectors of S.
(d) Show that the function <,> defined by: <(x,y), (z,w)>=xz for all $(x, y),(z, w)$ in \mathbb{R}^{2} is not an inner product on \mathbb{R}^{2}. (1 mark).

A5(d): <(0,1),(0,1)>=0, but $(0,1) \neq(0,0)$.

