Q1: (a) Show that the vector $w=(1,2,3) \in \operatorname{span}\{(1,2,2),(2,4,8)\}$. (3 marks)
(b) Let $\mathrm{V}=\mathrm{M}_{\mathrm{n}}$ and W is the set of all symmetric matrices of degree n . Prove that W is a subspace of V . (3 marks)

Q2: (a) Use the Wronskian to show that $1, x, x^{3}$ are linearly independent in the vector space $C^{2}(-\infty, \infty)$. (2 marks)
(b) show that the set $\mathrm{S}=\{(1,1,2),(2,1,1),(1,1,0)\}$ forms a basis for \mathbb{R}^{3} and then find the vector w whereas $(w)_{s}=(1,2,3)$. (4 marks)

Q3: (a) Let $B=\{(1,2),(2,5)\}$ and $B^{\prime}=\{(1,1),(2,0)\}$ be two bases of \mathbb{R}^{2}. Find the transition matrix from B^{\prime} to B . (3 marks).
(b) Find a basis for the column space of the matrix:

$$
A=\left[\begin{array}{cccc}
1 & 2 & 6 & -1 \\
2 & 4 & 4 & 6 \\
3 & 6 & 10 & 5
\end{array}\right]
$$

and deduce nullity $\left(\mathrm{A}^{\top}\right)$ without solving any linear system. (4 marks)

Q4: (a) Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ be a basis for a vector space \mathbf{V}. Suppose \mathbf{u} is a vector in \mathbf{V} such that
$\mathbf{u}=\left|A_{1}\right| \mathbf{v}_{\mathbf{1}}+2\left|A_{2}\right| \mathbf{v}_{\mathbf{2}}+3\left|A_{3}\right| \mathbf{v}_{\mathbf{3}}+\ldots+n\left|A_{n}\right| \mathbf{v}_{\mathbf{n}}$
where, A_{i} is a matrix of order 2 for all $i \in\{1,2, \ldots, n\}$. Find ($\left.\mathbf{u}\right)_{s}$ (1 mark)
(b) If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for a vector space \mathbf{V}, then prove that every vector \mathbf{v} in \mathbf{V} can be expressed in the form $\mathbf{v}=\mathrm{c}_{1} \mathbf{v}_{\mathbf{1}}+\mathrm{c}_{2} \mathbf{v}_{\mathbf{2}}+\ldots+\mathrm{c}_{n} \mathbf{v}_{\mathrm{n}}$ in exactly one way, where $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{n}}$ are real numbers. (2 marks)
(c) Show that $\operatorname{rank}(A)=\operatorname{rank}\left(\mathrm{A}^{\top}\right)$ for any matrix A . (1 mark)
(d) If u and v are linearly independent, then show that $u+v$ and $u-v$ are linearly independent. (2 marks)

Solutions:

A1(a):

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2 \\
2 & 8 & 3
\end{array}\right] \xrightarrow[(-2) R_{13}]{(-2) R_{12}}\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 0 & 0 \\
0 & 4 & 1
\end{array}\right] \xrightarrow{R_{23}}\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 4 & 1 \\
0 & 0 & 0
\end{array}\right]} \\
& \xrightarrow[4]{\frac{1}{4} R_{2}}\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & \frac{1}{4} \\
0 & 0 & 0
\end{array}\right] \xrightarrow{(-2) R_{21}}\left[\begin{array}{lll}
1 & 0 & \frac{1}{2} \\
0 & 1 & \frac{1}{4} \\
0 & 0 & 0
\end{array}\right] \\
& \Rightarrow(1,2,3)=\frac{1}{2}(1,2,2)+\frac{1}{4}(2,4,8)
\end{aligned}
$$

$A 1(b)$: For all $A, B \in W$ and $k \in \mathbb{R}$:
1- W is not empty since $0^{\top}=0$. Hence $0 \in W$
2- $(A+B)^{\top}=A^{\top}+B^{\top}=A+B$. So $A+B \in W$.
3- $(k A)^{\top}=k A^{\top}=k A$. So $k A \in W$
1,2 and 3 implies that W is a subspace of $V=M_{n n}$.
A2(a):

$$
\begin{aligned}
& W(x)=\left|\begin{array}{ccc}
1 & x & x^{3} \\
0 & 1 & 3 x^{2} \\
0 & 0 & 6 x
\end{array}\right|=6 x \\
& W(1)=6 \neq 0
\end{aligned}
$$

So $1, x, x^{3}$ are linearly independent.
A2(b):

$$
\left|\begin{array}{ccc}
1 & 2 & 1 \\
1 & 1 & 1 \\
2 & 1 & 0
\end{array}\right| \underset{(-2) R_{13}(-1) R_{12}}{=}\left|\begin{array}{ccc}
1 & 2 & 1 \\
0 & -1 & 0 \\
0 & -3 & -2
\end{array}\right|=1(-1)(-2)=2 \neq 0
$$

So the vectors (1,1,2), (2,1,1), ($1,1,0$) form a basis for \mathbb{R}^{3}. Now,

$$
w=(1,1,2)+2(2,1,1)+3(1,1,0)=(8,6,4)
$$

A3(a):

$$
\begin{aligned}
& {\left[B \mid B^{\prime}\right]=\left[\begin{array}{ll|ll}
1 & 2 & 1 & 2 \\
2 & 5 & 1 & 0
\end{array}\right] \xrightarrow{(-2) R_{12}}\left[\begin{array}{cc|cc}
1 & 2 & 1 & 2 \\
0 & 1 & -1 & -4
\end{array}\right]} \\
& \xrightarrow{(-2) R_{21}}\left[\begin{array}{cc|cc}
1 & 0 & 3 & 10 \\
0 & 1 & -1 & -4
\end{array}\right] \\
& =\left[I \mid P_{B^{\prime} \rightarrow B}\right] \\
& P_{B^{\prime} \rightarrow B}=\left[\begin{array}{cc}
3 & 10 \\
-1 & -4
\end{array}\right]
\end{aligned}
$$

A3(b):

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
1 & 2 & 6 & -1 \\
2 & 4 & 4 & 6 \\
3 & 6 & 10 & 5
\end{array}\right] \xrightarrow[(-3) R_{13}]{\substack{(-2) R_{12}}}\left[\begin{array}{cccc}
1 & 2 & 1 & 2 \\
0 & 0 & -8 & 8 \\
0 & 0 & -8 & 8
\end{array}\right] \\
& \xrightarrow{(-1) R_{23}}\left[\begin{array}{cccc}
1 & 2 & 1 & 2 \\
0 & 0 & -8 & 8 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{(-1 / 8) R_{2}}\left[\begin{array}{cccc}
1 & 2 & 1 & 2 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Using the leading ones, $\left\{\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]^{\top},\left[\begin{array}{lll}6 & 4 & 10\end{array}\right]^{\top}\right\}$ is a basis of col(A).
Now, $\operatorname{rank}(\mathrm{A})+$ nullity $\left(\mathrm{A}^{\top}\right)=m$
So nullity $\left(A^{\top}\right)=m-\operatorname{rank}(A)=3-2=1$

A4(a): $(u)_{s}=\left(\left|A_{1}\right|, 2\left|A_{2}\right|, 3\left|A_{3}\right|, \ldots, n\left|A_{n}\right|\right)$
A4(b): Suppose $v \in V$ has two expressions:
$\mathrm{v}=\mathrm{c}_{1} \mathrm{v}_{1}+\mathrm{c}_{2} \mathrm{v}_{2}+\cdots+\mathrm{c}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}$ and $\mathrm{v}=\mathrm{k}_{1} \mathrm{v}_{1}+\mathrm{k}_{2} \mathrm{v}_{2}+\cdots+\mathrm{k}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}$, so
$0=\left(c_{1}-k_{1}\right) v_{1}+\left(c_{2}-k_{2}\right) v_{2}+\cdots+\left(c_{n}-k_{n}\right) v_{n}$
But $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis, so it is linearly independent. Thus,
$c_{1}-k_{1}=c_{2}-k_{2}=\ldots=c_{n}-k_{n}=0$ and hence $c_{i}=k_{i}$ for all $i \in\{1,2, \ldots, n\}$ and hence v has exactly one expression.
$A 4(c): \operatorname{rank}(A)=\operatorname{dim}(\operatorname{row}(A))=\operatorname{dim}\left(\operatorname{col}\left(A^{\top}\right)\right)=\operatorname{rank}\left(A^{\top}\right)$.
A4(d): Observe that:

$$
\begin{aligned}
& a(u+v)+b(u-v)=0 \\
& \Rightarrow(a+b) u+(a-b) v=0 \\
& L . I . \Rightarrow a+b=0 \& a-b=0 \\
& \Rightarrow 2 a=0 \Rightarrow a=0 \Rightarrow b=0
\end{aligned}
$$

So, $u+v$ and $u-v$ are linearly independent.

