King Saud University
College of Sciences
Department of Mathematics

Final Exam, S1 1442
M 380 - Stochastic Processes
Time: 3 hours

Answer the following questions:

Q1: $[5+4]$
(a) Consider the Markov chain whose transition probability matrix is given by

$$
\left.\mathbf{P}=\begin{array}{c||cccc||}
\\
0 & 1 & 0 & 1 & 2 \\
0 & 0 & 0 \\
1 & 0.5 & 0.3 & 0.1 & 0.1 \\
2 & 0.1 & 0.3 & 0.4 & 0.2 \\
3 & 0 & 0 & 0 & 1
\end{array} \right\rvert\,
$$

(i) Starting in state 1 , determine the probability that the Markov chain ends in state 0 .
(ii) Determine the mean time to absorption.
(b) Demands on a first aid facility in a certain location occur according to a nonhomogeneous Poisson process having the rate function

$$
\lambda(t)= \begin{cases}t & \text { for } 0 \leq \mathrm{t}<2 \\ 1 & \text { for } 2 \leq \mathrm{t}<3 \\ 5-t & \text { for } 3 \leq \mathrm{t} \leq 6\end{cases}
$$

where t is measured in hours from the opening time of the facility. What is the probability that one demand occurs in the first 3 h of operation and two in the second 3 h ?

Q2: $[5+4]$
(a) For the Markov process $\left\{X_{t}\right\}, t=0,1,2, \ldots, n$ with states $i_{0}, i_{1}, i_{2}, \ldots, i_{n-1}, i_{n}$

Prove that: $\operatorname{Pr}\left\{\mathbf{X}_{0}=\mathrm{i}_{0}, \mathrm{X}_{1}=\mathrm{i}_{1}, \mathbf{X}_{2}=\mathrm{i}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}=\mathrm{i}_{\mathrm{n}}\right\}=p_{\mathrm{i}_{0}} P_{i_{0} i_{1}} P_{i_{i}} \ldots P_{i_{n-1} i_{n}}$ where $p_{i_{0}}=\operatorname{pr}\left\{\mathbf{X}_{0}=\mathrm{i}_{0}\right\}$
(b) Consider the problem of sending a binary message, 0 or 1 , through a signal channel consisting of several stages, where transmission through each stage is subject to a fixed probability of error α. Suppose that $X_{0}=0$ is the signal that is sent and let X_{n} be the signal that is received at the nth stage. Assume that $\left\{X_{n}\right\}$ is a Markov chain with transition probabilities $P_{00}=P_{11}=1-\alpha$ and $P_{01}=P_{10}=\alpha$, where $0<\alpha<1$.
i) Determine $\operatorname{Pr}\left\{X_{0}=0, X_{1}=0, X_{2}=0\right\}$, the probability that no error occurs up to stage $n=2$.
ii) Determine the probability that a correct signal is received at stage 2 .

Q3: $[5+5]$
(a) A pure death process starting from $X(0)=3$ has death parameters $\mu_{0}=0, \mu_{1}=2, \mu_{2}=3$ and $\mu_{3}=4$. Determine $P_{n}(t)$ for $n=0,1,2,3$.
(b) Let $X(t)$ be a Yule process that is observed at a random time U, where U is uniformly distributed over $[0,1]$. Show that $\operatorname{pr}\{X(U)=k\}=p^{k} /(\beta k)$ for $k=1,2, \ldots$, with $p=1-e^{-\beta}$.

Q4: [6]

An airline reservation system has two computers, only one of which is in operation at any given time. A computer may break down on any given day with probability p . There is a duplicate repair facility that takes 2 days to restore a computer to normal. The facilities are such that both two computers can be repaired simultaneously. Form a Markov chain by taking as states the pairs (x, y), where x is the number of machines in operating condition at the end of a day and y is 1 if a day's labor has been expended on a machine not yet repaired and 0 otherwise. Also, find the system availability.

Q5: [6]
Suppose that the summands ξ_{1}, ξ_{2}, \ldots are continuous random variables having a probability
density function $f(z)= \begin{cases}\lambda e^{-\lambda z} & \text { for } z \geq 0 \\ 0 & \text { for } z<0\end{cases}$
and $P_{N}(n)=\beta(1-\beta)^{n-1}$ for $n=1,2, \ldots$
Find the probability density function for $X=\xi_{1}+\xi_{2}+\ldots+\xi_{N}$

Model Answer

Q1: $[5+4]$
(a)

$$
\left.\mathbf{P}=\begin{array}{c||cccc||}
\\
0 \\
1 & 1 & 0 & 0 & 0 \\
0.5 & 0.3 & 0.1 & 0.1 \\
2 & 0.1 & 0.3 & 0.4 & 0.2 \\
3 & 0 & 0 & 0 & 1
\end{array} \right\rvert\,
$$

$u_{i}=\operatorname{pr}\left\{X_{T}=0 \mid X_{0}=i\right\}$ for $\mathrm{i}=1,2$,
and $v_{i}=\mathrm{E}\left[T \mid X_{0}=i\right] \quad$ for $\mathrm{i}=1,2$.
(i)

$$
\begin{aligned}
& u_{1}=p_{10}+p_{11} u_{1}+p_{12} u_{2} \\
& u_{2}=p_{20}+p_{21} u_{1}+p_{22} u_{2} \\
& \Rightarrow \\
& u_{1}=0.5+0.3 u_{1}+0.1 u_{2} \\
& u_{2}=0.1+0.3 u_{1}+0.4 u_{2} \\
& \Rightarrow
\end{aligned}
$$

$$
\begin{equation*}
7 u_{1}-u_{2}=5 \tag{1}
\end{equation*}
$$

$3 u_{1}-6 u_{2}=-1$
Solving (1) and (2), we get

$$
u_{1}=\frac{31}{39} \text { and } u_{2}=\frac{22}{39}
$$

Starting in state 1 , the probability that the Markov chain ends in state 0 is $u_{1}=u_{10}=\frac{31}{39}=0.7949$
(ii) Also, the mean time to absorption can be found as follows
$v_{1}=1+p_{11} v_{1}+p_{12} v_{2}$
$v_{2}=1+p_{21} v_{1}+p_{22} v_{2}$

$$
\begin{aligned}
& \Rightarrow \\
& v_{1}=1+0.3 v_{1}+0.1 v_{2} \\
& v_{2}=1+0.3 v_{1}+0.4 v_{2} \\
& \Rightarrow
\end{aligned}
$$

$$
\begin{equation*}
7 v_{1}-v_{2}=10 \tag{1}
\end{equation*}
$$

$3 v_{1}-6 v_{2}=-10$
Solving (1) and (2), we get
$v_{1}=\frac{70}{39}$ and $v_{2}=\frac{100}{39}$
$v_{1}=v_{10}=\frac{70}{39}=1.7949$
(b)
i)

$$
\begin{aligned}
\mu_{1} & =\int_{0}^{3} \lambda(u) d u \\
& =\int_{0}^{2} t d t+\int_{2}^{3} 1 d t \\
& =\left[\frac{t^{2}}{2}\right]_{0}^{2}+[t]_{2}^{3} \\
& =2+1=3
\end{aligned}
$$

The prob. that one demand occurs in the first 3 h of operation is $\operatorname{Pr}\{X(3)=1\}=\operatorname{Pr}\{X(3)-X(0)=1\}$

$$
\begin{aligned}
& =\frac{e^{-\mu_{1}} \mu_{1}^{k}}{k!} \\
& =\frac{e^{-3} \times 3^{1}}{1!}=0.1494 \\
& \approx 0.15
\end{aligned}
$$

ii)

$$
\begin{aligned}
\mu_{2} & =\int_{3}^{6} \lambda(u) d u \\
& =\int_{3}^{6}(5-t) d t \\
& =\left[5 t-\frac{t^{2}}{2}\right]_{3}^{6} \\
& =12-10.5=1.5
\end{aligned}
$$

The prob. that two demands occur in the second 3 h of operation is
$\operatorname{Pr}\{X(6)-X(3)=2\}$

$$
\begin{aligned}
& =\frac{e^{-\mu_{2}} \mu_{2}^{k}}{k!} \\
& =\frac{e^{-1.5} \times 1.5^{2}}{2!} \\
& \approx 0.25
\end{aligned}
$$

Q2: $[5+4]$
(a)
$\because \operatorname{Pr}\left\{\mathrm{X}_{0}=\mathrm{i}_{0}, \mathrm{X}_{1}=\mathrm{i}_{1}, \mathrm{X}_{2}=\mathrm{i}_{2}, \ldots, \mathrm{X}_{n}=\mathrm{i}_{n}\right\}$
$=\operatorname{Pr}\left\{\mathrm{X}_{0}=\mathrm{i}_{0}, \mathrm{X}_{1}=\mathrm{i}_{1}, \mathrm{X}_{2}=\mathrm{i}_{2}, \ldots, \mathrm{X}_{n-1}=\mathrm{i}_{n-1}\right\} \cdot \operatorname{Pr}\left\{\mathrm{X}_{n}=\mathrm{i}_{n} \mid \mathrm{X}_{0}=\mathrm{i}_{0}, \mathrm{X}_{1}=\mathrm{i}_{1}, \mathrm{X}_{2}=\mathrm{i}_{2}, \ldots, \mathrm{X}_{n-1}=\mathrm{i}_{n-1}\right\}$
$=\operatorname{Pr}\left\{X_{0}=i_{0}, X_{1}=i_{1}, X_{2}=i_{2}, \ldots, X_{n-1}=i_{n-1}\right\} \cdot \mathrm{P}_{\mathrm{i}_{n-1} \mathrm{i}_{n}} \quad$ Definition of Markov
By repeating this argument $n-1$ times
$\therefore \operatorname{Pr}\left\{\mathrm{X}_{0}=\mathrm{i}_{0}, \mathrm{X}_{1}=\mathrm{i}_{1}, \mathrm{X}_{2}=\mathrm{i}_{2}, \ldots, \mathrm{X}_{n}=\mathrm{i}_{n}\right\}$
$=p_{i_{0}} P_{i_{0} i_{1}} \mathrm{P}_{\mathrm{i}_{1} \mathrm{i}_{2}} \ldots \mathrm{P}_{\mathrm{i}_{n-2} \mathrm{i}_{n-1}} \mathrm{P}_{\mathrm{i}_{n-1} \mathrm{i}_{n}}$ where $\mathrm{p}_{\mathrm{i}_{0}}=\operatorname{Pr}\left\{\mathrm{X}_{0}=\mathrm{i}_{0}\right\}$ is obtained from the initial distribution of the process.
(b)
i)

$$
p_{0}=\operatorname{pr}\left(X_{0}=0\right)=1
$$

$$
\begin{aligned}
\operatorname{Pr}\left\{X_{0}=0, X_{1}=0, X_{2}=0\right\} & =p_{0} P_{00} P_{00} \\
& =1 \times(1-\alpha) \times(1-\alpha) \\
& =(1-\alpha)^{2}
\end{aligned}
$$

ii)
$\operatorname{Pr}\left\{X_{0}=0, X_{1}=0, X_{2}=0\right\}+\operatorname{Pr}\left\{X_{0}=0, X_{1}=1, X_{2}=0\right\}$
$=p_{0} P_{00} P_{00}+p_{0} P_{01} P_{10}$
$=(1-\alpha)^{2}+\alpha^{2}$
$=1-2 \alpha+2 \alpha^{2}$
Q3: $[5+5]$
(a) The transition probabilities are given by

$$
\begin{equation*}
p_{N}(t)=e^{-\mu_{N} t} \tag{1}
\end{equation*}
$$

and for $n<N$

$$
\begin{align*}
p_{n}(t) & =p r\{X(t)=n \mid X(0)=N\} \\
& =\mu_{n+1} \mu_{n+2} \cdots \mu_{N}\left[A_{n, n} e^{-\mu_{n} t}+\ldots+A_{k, n} e^{-\mu_{k} t}+\ldots+A_{N, n} e^{-\mu_{N} t}\right] \tag{2}
\end{align*}
$$

where $A_{k, n}=\prod_{i=N}^{n} \frac{1}{\left(\mu_{i}-\mu_{k}\right)}, \quad i \neq k, n \leq k \leq N, i=N, N-1, \ldots, n$
For $\mathrm{N}=3 \quad(1) \Rightarrow \mathrm{p}_{3}(\mathrm{t})=\mathrm{e}^{-\mu_{3} t}$
$\therefore \mathrm{p}_{3}(\mathrm{t})=\mathrm{e}^{-4 t}$
For $\mathrm{n}=2 \quad(2) \Rightarrow \mathrm{p}_{2}(\mathrm{t})=\mu_{3}\left[A_{2,2} e^{-\mu_{2} t}+A_{3,2} e^{-\mu_{3} t}\right]$
(3) $\Rightarrow A_{2,2}=\prod_{i=3}^{2} \frac{1}{\left(\mu_{i}-\mu_{2}\right)}, i \neq 2$

$$
=\frac{1}{\mu_{3}-\mu_{2}}=1,
$$

$$
\begin{align*}
A_{3,2} & =\prod_{i=3}^{2} \frac{1}{\left(\mu_{i}-\mu_{3}\right)}, i \neq 3 \\
& =\frac{1}{\mu_{2}-\mu_{3}}=-1 \tag{II}
\end{align*}
$$

$\therefore \mathrm{p}_{2}(\mathrm{t})=4\left[e^{-3 t}-e^{-4 t}\right]$
For $\mathrm{n}=1 \quad(2) \Rightarrow \mathrm{p}_{1}(\mathrm{t})=\mu_{2} \mu_{3}\left[A_{1,1} e^{-\mu_{1} t}+A_{2,1} e^{-\mu_{2} t}+A_{3,1} e^{-\mu_{3} t}\right]$

$$
\begin{align*}
& \text { (3) } \begin{aligned}
& \Rightarrow A_{1,1}=\prod_{i=3}^{1} \frac{1}{\left(\mu_{i}-\mu_{1}\right)}, i \neq 1 \\
&=\frac{1}{\left(\mu_{3}-\mu_{1}\right)\left(\mu_{2}-\mu_{1}\right)}=\frac{1}{2}, \\
& A_{2,1}=\prod_{i=3}^{1} \frac{1}{\left(\mu_{i}-\mu_{2}\right)}, i \neq 2 \\
&=\frac{1}{\left(\mu_{3}-\mu_{2}\right)\left(\mu_{1}-\mu_{2}\right)}=-1, \\
& A_{3,1}=\prod_{i=3}^{1} \frac{1}{\left(\mu_{i}-\mu_{3}\right)}, i \neq 3 \\
&=\frac{1}{\left(\mu_{2}-\mu_{3}\right)\left(\mu_{1}-\mu_{3}\right)}=\frac{1}{2} \\
& \mathrm{p}_{1}(\mathrm{t})=12\left[\frac{1}{2} e^{-2 t}-e^{-3 t}+\frac{1}{2} e^{-4 t}\right] \\
& \therefore \mathrm{p}_{1}(\mathrm{t})=6\left[e^{-2 t}-2 e^{-3 t}+e^{-4 t}\right]
\end{aligned}
\end{align*}
$$

Using (I), (II) and (III) we can get p_{0} (t) as follows

$$
\begin{aligned}
\therefore \mathrm{p}_{0}(\mathrm{t}) & =1-\left[\mathrm{p}_{1}(\mathrm{t})+\mathrm{p}_{2}(\mathrm{t})+\mathrm{p}_{3}(\mathrm{t})\right] \\
\quad= & \left.1-\left[6 e^{-2 t}-12 e^{-3 t}+6 e^{-4 t}+4 e^{-3 t}-4 e^{-4 t}+\mathrm{e}^{-4 t}\right]\right) \\
\quad= & 1-6 e^{-2 t}+8 e^{-3 t}-3 e^{-4 t}
\end{aligned}
$$

(b) For Yule process,

$$
\begin{aligned}
& p_{n}(t)=e^{-\beta t}\left(1-e^{-\beta t}\right)^{n-1}, \quad n \geq 1 \\
& \begin{aligned}
& \Rightarrow \\
& \because \operatorname{pr}\{X(U)=k\}
\end{aligned} \\
& =\int_{0}^{1} e^{-\beta u}\left(1-e^{-\beta u}\right)^{k-1} d u \\
& \\
& =\frac{1}{\beta} \int_{0}^{1}\left(1-e^{-\beta u}\right)^{k-1} \cdot \beta e^{-\beta u} d u \\
& = \\
& =\frac{1}{\beta}\left[\frac{\left(1-e^{-\beta u}\right)^{k}}{k}\right]_{0}^{1} \\
& \\
& =\frac{1}{\beta k}\left[\left(1-e^{-\beta}\right)^{k}\right]
\end{aligned} \begin{aligned}
\therefore \operatorname{pr}\{X(U)=k\} & =\frac{p^{k}}{\beta k}, k=1,2, \ldots \text { where } p=1-e^{-\beta}
\end{aligned}
$$

Q4: [6]
(a)

	$(2,0)$	$(1,0)$	$(1,1)$	$(0,1)$
$(2,0)$	q	p	0	0
$(1,0)$	0	0	q	p
$(1,1)$	q	p	0	0
$(0,1)$	0	0	1	0

In the long run, the limiting distribution is $\pi=\left(\pi_{0}, \pi_{1}, \pi_{2}, \pi_{3}\right)$

$$
\begin{align*}
q \pi_{0}+q \pi_{2}=\pi_{0} \Rightarrow \pi_{2} & =\frac{p}{q} \pi_{0}, p=1-q \tag{1}\\
p \pi_{0}+p \pi_{2}=\pi_{1} \Rightarrow \pi_{1} & =p \pi_{0}+\frac{p^{2}}{q} \pi_{0} \\
& =\frac{p q+p^{2}}{q} \pi_{0} \\
& =\frac{p(q+p)}{q} \pi_{0} \\
& =\frac{p}{q} \pi_{0}, p+q=1 \tag{2}
\end{align*}
$$

Also, $p \pi_{1}=\pi_{3}$
$\therefore \pi_{3}=\frac{p^{2}}{q} \pi_{0}$

And $\because \pi_{0}+\pi_{1}+\pi_{2}+\pi_{3}=1$
\therefore By substituting (1), (2), (3) in (4)
$\Rightarrow \pi_{0}+\frac{p}{q} \pi_{0}+\frac{p}{q} \pi_{0}+\frac{p^{2}}{q} \pi_{0}=1$
$\Rightarrow \pi_{0}\left(\frac{1+p+p^{2}}{q}\right)=1, p+q=1$
$\therefore \quad \pi_{0}=\frac{q}{1+p+p^{2}}$
(1), (2) $\Rightarrow \pi_{1}=\pi_{2}=\frac{p}{q} \pi_{0}$

$$
\begin{equation*}
=\frac{p}{1+p+p^{2}} \tag{6}
\end{equation*}
$$

(3) $\Rightarrow \pi_{3}=\frac{p^{2}}{1+p+p^{2}}$
\therefore The limiting distribution is determined by equations (5), (6) and (7).
The availability for two repair facilities is

$$
\begin{align*}
\text { Ava } & =1-\pi_{3} \\
& =1-\frac{p^{2}}{1+p+p^{2}} \\
& =\frac{1+p}{1+p+p^{2}} \tag{8}
\end{align*}
$$

Q5: [6]
We have $f_{X}(z)=\sum_{n=1}^{\infty} f^{n}(z) P_{N}(n)$
\because The n-fold convolution of $f(z)$ is the Gamma density function, $n \geq 1$
$\therefore f^{n}(z)= \begin{cases}\frac{\lambda^{n}}{\Gamma(n)} z^{n-1} e^{-\lambda z} & z \geq 0 \\ 0 & z<0\end{cases}$
\Rightarrow
$f^{n}(z)= \begin{cases}\frac{\lambda^{n}}{(n-1)!} z^{n-1} e^{-\lambda z} & z \geq 0 \\ 0 & z<0\end{cases}$
and $\because P_{N}(n)=\beta(1-\beta)^{n-1}$ for $n=1,2, \ldots$

$$
\begin{aligned}
\therefore f_{X}(z) & =\lambda \beta e^{-\lambda z} \sum_{n=1}^{\infty} \frac{[\lambda(1-\beta) z]^{n-1}}{(n-1)!} \\
& =\lambda \beta e^{-\lambda z} \cdot e^{\lambda(1-\beta) z} \\
& =\lambda \beta e^{-\lambda \beta z}, \quad z \geq 0
\end{aligned}
$$

$\therefore X$ has an exponential distribution with parameter $\lambda \beta$.

