Answer the following questions:



Final Exam, S2 1442 M 380 - Stochastic Processes Time: 3 hours - Marks: 20

### Q1: [4+4]

(a) Given the joint probability mass function of two random variables  $\, X \,$  and  $\, Y \,$  as in the following table:

| XY | -1  | 0   | 1   |
|----|-----|-----|-----|
| -1 | 1/9 | 0   | 2/9 |
| 0  | 2/9 | 1/9 | 0   |
| 1  | 0   | 2/9 | 1/9 |

- i) Find  $\rho(X,Y)$
- ii) Determine whether X and Y are two independent random variables or not, Justify your answer.
- (b) Suppose that X and Y are two independent random variables, each having the same exponential distribution with parameter  $\alpha$ . What is the conditional probability density function for X, given that Z = X + Y = z? with clarifying, the name of the distribution.

(Hint, 
$$f_{X,Z}(x,z) = \alpha^2 e^{-\alpha z}$$
 for  $0 \le x \le z$ )

## Q2:[4+4]

- (a) Let X and Y be independent Poisson distributed random variables having means  $\mu$  and  $\nu$ , respectively. Determine the probability distribution of their sum Z = X + Y = n.
- (b) Suppose that  $\xi_1, \xi_2, ..., \xi_N$  are independent and identically distributed with  $\Pr\{\xi_k = \pm 1\} = \frac{1}{2}$ . Let N be independent of  $\xi_1, \xi_2, ...$  and follow the geometric probability mass function

$$P_N(k) = \alpha (1-\alpha)^k$$
 for  $k=0,1,...$ , where  $0<\alpha<1$ . Determine the mean and variance of the random sum  $Z=\xi_1+\xi_2+...+\xi_N$ .

Q3: [4+4]

- (a) Customers arrive at a facility and wait there until K customers have accumulated. Upon the arrival of the K th customer, all are instantaneously served, and the process repeats. Let  $\xi_0, \xi_1, \ldots$  denote the arrivals in successive periods, assumed to be independent random variables whose distribution is given by  $\Pr(\xi_k=0)=\alpha, \ \Pr(\xi_k=1)=1-\alpha, \ \text{where} \ 0<\alpha<1.$  Let  $X_n$  denote the number of customers in the system at time n. Then,  $\{X_n\}$  is a Markov chain on the states  $0,1,\ldots,K-1$ . With K=3, give the transition probability matrix for  $\{X_n\}$ .
- (b) Let  $\{X(t);\ t \ge 0\}$  be a Poisson process having rate parameter  $\lambda = 2$ . Determine the numerical values to two decimal places for the following probabilities:
- (i)  $\Pr\{X(1) \le 2\}$
- (ii)  $Pr\{X(1) = 1 \text{ and } X(2) = 3\}$
- (iii)  $\Pr\{X(1) \ge 2 | X(1) \ge 1\}$

Q4:[4+4]

(a) Suppose that a production process changes state according to a Markov process whose transition probability matrix is given by

$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 0.3 & 0.5 & 0 & 0.2 \\ 0.5 & 0.2 & 0.2 & 0.1 \\ 2 & 0.2 & 0.3 & 0.4 & 0.1 \\ 3 & 0.1 & 0.2 & 0.4 & 0.3 \end{bmatrix}$$

It's known that  $\pi_1 = \frac{119}{379} = 0.3140$  and  $\pi_2 = \frac{81}{379} = 0.2137$ . Determine the limiting probabilities  $\pi_0$  and  $\pi_3$ .

(b) Let  $X_n$  denote the condition of a machine at the end of period n for  $n=1,2,\ldots$ . Let  $X_0$  be the condition of the machine at the start. Consider the condition of a machine at any time can be observed and classified as being in one of the following three states:

State 1: Good operating order, State 2: Deteriorated operating order and State 3: In repair.

Assume that  $\{X_n\}$  is a Markov chain with transition probability matrix

$$\begin{array}{c|cccc}
 & 1 & 2 & 3 \\
 & 1 & 0.9 & 0.1 & 0 \\
 & 0 & 0.9 & 0.1 \\
 & 3 & 1 & 0 & 0
\end{array}$$

and starts in state  $X_0 = 1$ .

- (i) Find  $\Pr\{X_4 = 1\}$ .
- (ii) Calculate the limiting distribution.
- (iii) What is the long run rate of repairs per unit time?

Q5:[4+4]

- (a) A pure birth process starting from X(0) = 0 has birth parameters  $\lambda_0 = 1$ ,  $\lambda_1 = 2$ ,  $\lambda_2 = 3$  and  $\lambda_3 = 5$ . Determine  $P_n(t)$  for n = 0,1,2,3.
- (b) A pure death process starting from X(0)=3 has death parameters  $\mu_0=0,\ \mu_1=2,\ \mu_2=3$  and  $\mu_3=5$ . Determine  $P_n(t)$  for n=0,1,2,3.

#### Model Answer

# Q1: [4+4]

(a)

| X          | -1  | 0   | 1   | $P_{X}(x)$ |
|------------|-----|-----|-----|------------|
| -1         | 1/9 | 0   | 2/9 | 1/3        |
| 0          | 2/9 | 1/9 | 0   | 1/3        |
| 1          | 0   | 2/9 | 1/9 | 1/3        |
| $P_{Y}(y)$ | 1/3 | 1/3 | 1/3 | Sum=1      |

$$E(X) = 0$$
,  $E(X^2) = \frac{2}{3}$ ,  $Var(X) = \frac{2}{3}$   
 $E(Y) = 0$ ,  $E(Y^2) = \frac{2}{3}$ ,  $Var(Y) = \frac{2}{3}$   
 $E(XY) = 0$ 

$$Cov(X,Y) = E(XY) - E(X)E(Y) = 0$$

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$
$$= \frac{0}{2/3}$$
$$= 0$$

 $\Rightarrow X$  and Y are not correlated

∴ For example, 
$$P(X = 0, Y = 1) = 0$$
, but  $P(X = 0)P(Y = 1) = \frac{1}{9}$   
⇒  $P(X = 0, Y = 1) \neq P(X = 0)P(Y = 1)$ 

 $\therefore$  X and Y are not independent r.vs

(b)

$$\therefore X \sim \exp(\alpha) \text{ and } Y \sim \exp(\alpha)$$
and  $Z = X + Y$ 

$$\therefore Z \sim gamma(2, \alpha)$$

$$\Rightarrow f(z) = \frac{\alpha^2}{\Gamma(2)} z e^{-\alpha z} = \alpha^2 z e^{-\alpha z}$$

$$f(x|z) = \frac{f_{X,Z}(x,z)}{f_Z(z)}$$
$$= \frac{\alpha^2 e^{-\alpha z}}{\alpha^2 z e^{-\alpha z}} = \frac{1}{z}, \quad 0 \le x \le z$$

 $\therefore X|Z=z$  is uniformly distributed over the interval [0,z]

## Q2:[4+4]

(a)

$$r(Z = n) = \sum_{k=0}^{n} pr\{X = k\} pr\{Y = n - k\}$$

$$= \sum_{k=0}^{n} \frac{\mu^{k} e^{-\mu} v^{(n-k)} e^{-v}}{k! (n-k)!}$$

$$= \frac{e^{-(\mu+v)}}{n!} \sum_{k=0}^{n} \frac{n! \mu^{k} v^{(n-k)}}{k! (n-k)!}$$

 $\therefore pr(Z=n) = e^{-(\mu+v)} \frac{(\mu+v)^n}{n!}$  (by using binomial formula)

 $\therefore$  Z is a poisson distributed with parameter  $\mu + v$ .

(b)

$$Z = \xi_1 + \xi_2 + \dots + \xi_N$$
.

$$E(\xi_k) = \mu = 0$$
,  $Var(\xi_k) = \sigma^2 = 1$ 

$$E(N) = v = \frac{1-\alpha}{\alpha}$$
,  $Var(N) = \tau^2 = \frac{1-\alpha}{\alpha^2}$ 

$$:: E(Z) = \mu v$$

$$\therefore E(Z) = 0$$

$$:: \operatorname{Var}(\mathbf{Z}) = v\sigma^2 + \mu^2 \tau^2$$

$$\therefore \operatorname{Var}(Z) = \frac{1-\alpha}{\alpha}(1) + 0(\frac{1-\alpha}{\alpha^2})$$
$$= \frac{1-\alpha}{\alpha}$$

## Q3:[4+4]

(a)

$$\begin{array}{c|cccc}
0 & 1 & 2 \\
0 & \alpha & 1 - \alpha & 0 \\
\mathbf{P} = 1 & 0 & \alpha & 1 - \alpha \\
2 & 0 & 0 & 1
\end{array}$$

(b)

For Poisson Process

$$\Pr\left\{X(s+t) - X(s) = k\right\}$$

$$= \frac{(\lambda t)^k e^{-\lambda t}}{k!}, \ k = 0, 1, 2, \dots$$

(i)

$$\Pr\{X(1) \le 2\} = \Pr\{X(1) = 0\} + \Pr\{X(1) = 1\} + \Pr\{X(1) = 2\}$$
$$= \frac{2^{0}e^{-2}}{0!} + \frac{2^{1}e^{-2}}{1!} + \frac{2^{2}e^{-2}}{2!} = 5e^{-2} \approx 0.68$$

(ii)

$$\Pr\{X(1) = 1 \text{ and } X(2) = 3 \}$$

$$= \Pr\{X(1) = 1\} \Pr\{X(2) = 3\}$$

$$= \Pr\{X(1) - X(0) = 1\} \Pr\{X(2) - X(1) = 2\}$$

$$= \frac{2^{1}e^{-2}}{1!} \cdot \frac{2^{2}e^{-2}}{2!} = 4e^{-4} \approx 0.07$$

(iii)

$$\begin{aligned} &\Pr\left\{X(1) \geq 2 \, \big| X(1) \geq 1\right\} \\ &= \frac{\Pr\left\{X(1) \geq 2 \text{ and } X(1) \geq 1\right\}}{\Pr\left\{X(1) \geq 1\right\}} \\ &= \frac{\Pr\left\{X(1) \geq 2\right\}}{1 - \Pr\left\{X(1) < 1\right\}} \\ &= \frac{1 - \Pr\left\{X(1) < 2\right\}}{1 - \Pr\left\{X(1) < 1\right\}} \\ &= \frac{1 - \left[\Pr\left\{X(1) = 0\right\} + \Pr\left\{X(1) = 1\right\}\right]}{1 - \Pr\left\{X(1) = 0\right\}} \\ &= \frac{1 - \frac{e^{-2}}{0!} - \frac{2e^{-2}}{1!}}{1 - e^{-2}} = 0.68696 \end{aligned}$$

## Q4: [4+4]

(a)

$$\pi_0 = \frac{117}{379} = 0.3087$$
 and  $\pi_3 = \frac{62}{379} = 0.1636$ 

(b)

(i)

$$\begin{array}{c|cccc}
 & 1 & 2 & 3 \\
 & 1 & 0.9 & 0.1 & 0 \\
 & 0 & 0.9 & 0.1 \\
 & 3 & 1 & 0 & 0
\end{array}$$

$$\begin{array}{l} : \quad \Pr\left\{X_{4}=1\right\} = \Pr\left\{X_{4}=1 \big| X_{0}=1\right\} \Pr\left\{X_{0}=1\right\} \\ = P_{11}^{4}, \quad \Pr\left\{X_{0}=1\right\} = 1 \end{array}$$

$$\begin{vmatrix} 1 & 2 & 3 \\ 1 & 0.81 & 0.18 & 0.01 \\ 0.1 & 0.81 & 0.09 \\ 3 & 0.9 & 0.1 & 0 \end{vmatrix}$$

and 
$$P^4 = 2 \begin{vmatrix} 0.6831 & 0.2926 & 0.0243 \\ 0.2430 & 0.6831 & 0.0739 \\ 3 & 0.7390 & 0.2430 & 0.0180 \end{vmatrix}$$

$$\therefore \Pr\{X_4 = 1\} = 0.6831$$

(ii) To get the limiting distribution  $\pi = (\pi_1, \pi_2, \pi_3) = (\pi_G, \pi_D, \pi_R)$ 

Solving the following equations

$$\pi_1 = 0.9\pi_1 + \pi_3 \tag{1}$$

$$\pi_2 = 0.1\pi_1 + 0.9\pi_2 \tag{2}$$

$$\pi_3 = 0.1\pi_2 \tag{3}$$

$$\pi_1 + \pi_2 + \pi_3 = 1 \tag{4}$$

$$(1) \Rightarrow \pi_3 = 0.1\pi_1$$

$$(2) \Rightarrow \pi_2 = \pi_1$$

also, (3) 
$$\pi_3 = 0.1\pi_2$$

$$(4) \Rightarrow \pi_1 + \pi_1 + 0.1\pi_1 = 1$$

$$\pi_1 = \frac{10}{21}$$

$$\Rightarrow$$
:  $\pi_2 = \frac{10}{21}$  and  $\pi_3$ 

$$\therefore \pi = (\frac{10}{21}, \frac{10}{21}, \frac{1}{21})$$

(iii) 
$$\pi_R = \pi_3 = \frac{1}{21} = 0.0476$$

# Q5: [4+4]

(a)

For pure birth process, the transition probabilities are given by

$$\begin{aligned} p_{0}(t) &= e^{-\lambda_{0}t}, \quad (1) \\ p_{1}(t) &= \lambda_{0} \left[ \frac{1}{\lambda_{1} - \lambda_{0}} e^{-\lambda_{0}t} + \frac{1}{\lambda_{0} - \lambda_{1}} e^{-\lambda_{1}t} \right], \quad (2) \\ \text{and } p_{n}(t) &= pr \left\{ X(t) = n \left| X(0) = 0 \right\} \right. \\ &= \lambda_{0} \lambda_{1} ... \lambda_{n-1} \left[ B_{0,n} e^{-\lambda_{0}t} + ... + B_{k,n} e^{-\lambda_{k}t} + ... + B_{n,n} e^{-\lambda_{n}t} \right], \quad n > 1, \quad (3) \end{aligned}$$

where

$$B_{k,n} = \prod_{i=0}^{n} \left( \frac{1}{\lambda_i - \lambda_k} \right) i \neq k, \ 0 < k < n,$$

$$B_{0,n} = \prod_{i=1}^{n} \left( \frac{1}{\lambda_i - \lambda_0} \right)$$

and

$$B_{n,n} = \prod_{i=0}^{n-1} \left( \frac{1}{\lambda_i - \lambda_n} \right)$$

at 
$$n = 0$$
 (1)  $\Rightarrow p_0(t) = e^{-\lambda_0 t}$ ,  $\lambda_0 = 1$ 

$$\therefore p_0(t) = e^{-t}$$

at 
$$n = 1$$
 (2)  $\Rightarrow p_1(t) = [e^{-t} - e^{-2t}]$ 

at 
$$n = 2$$
 (3)  $\Rightarrow p_2(t) = \lambda_0 \lambda_1 \left[ B_{0,2} e^{-\lambda_0 t} + B_{1,2} e^{-\lambda_1 t} + B_{2,2} e^{-\lambda_2 t} \right],$ 

where, 
$$B_{0,2} = \frac{1}{(\lambda_1 - \lambda_0)(\lambda_2 - \lambda_0)}$$
$$= \frac{1}{2},$$

$$B_{1,2} = \frac{1}{(\lambda_0 - \lambda_1)(\lambda_2 - \lambda_1)}$$
$$= -1$$

and

$$B_{2,2} = \frac{1}{(\lambda_0 - \lambda_2)(\lambda_1 - \lambda_2)}$$
$$= \frac{1}{2}$$

$$\therefore p_2(t) = 2\left[\frac{1}{2}e^{-t} - e^{-2t} + \frac{1}{2}e^{-3t}\right]$$

at 
$$n = 2$$
 (3)  $\Rightarrow p_3(t) = \lambda_0 \lambda_1 \lambda_2 \left[ B_{0,3} e^{-\lambda_0 t} + B_{1,3} e^{-\lambda_1 t} + + B_{2,3} e^{-\lambda_2 t} + B_{3,3} e^{-\lambda_3 t} \right]$ 

where 
$$B_{0,3} = \frac{1}{(\lambda_1 - \lambda_0)(\lambda_2 - \lambda_0)(\lambda_3 - \lambda_0)} = \frac{1}{8}$$
,

$$B_{1,3} = \frac{1}{(\lambda_0 - \lambda_1)(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)} = -\frac{1}{3},$$

$$B_{2,3} = \frac{1}{(\lambda_0 - \lambda_2)(\lambda_1 - \lambda_2)(\lambda_3 - \lambda_2)} = \frac{1}{4},$$

and

$$B_{3,3} = \frac{1}{(\lambda_0 - \lambda_3)(\lambda_1 - \lambda_3)(\lambda_2 - \lambda_3)} = -\frac{1}{24}.$$

$$\therefore p_3(t) = 6 \left[ \frac{1}{8} e^{-t} - \frac{1}{3} e^{-2t} + \frac{1}{4} e^{-3t} - \frac{1}{24} e^{-5t} \right]$$

(b)

For pure death process, the transition probabilities are given by

$$p_N(t) = e^{-\mu_N t} \tag{1}$$

and for n < N

$$\begin{split} p_n(t) &= pr \left\{ X(t) = n \left| X(0) = N \right. \right\} \\ &= & \mu_{n+1} \mu_{n+2} \ \dots \ \mu_N \left[ A_{n,n} e^{-\mu_n t} + \ \dots + A_{k,n} e^{-\mu_k t} + \ \dots + A_{N,n} e^{-\mu_N t} \right] \end{split} \tag{2}$$

Where 
$$A_{k,n} = \prod_{i=N}^{n} \frac{1}{(\mu_i - \mu_k)}$$
,  $i \neq k$ ,  $n \leq k \leq N$ ,  $i = N, N-1, ..., n$  (3)

For N=3 (1) 
$$\Rightarrow$$
 p<sub>3</sub>(t)=e<sup>- $\mu_3 t$</sup> 

$$\therefore p_3(t) = e^{-5t}$$
 (I)

For n=2 (2) 
$$\Rightarrow$$
 p<sub>2</sub>(t)= $\mu_3 \left[ A_{2,2} e^{-\mu_2 t} + A_{3,2} e^{-\mu_3 t} \right]$ 

(3) 
$$\Rightarrow A_{2,2} = \prod_{i=3}^{2} \frac{1}{(\mu_i - \mu_2)}, i \neq 2$$
  
=  $\frac{1}{\mu_2 - \mu_2} = \frac{1}{2}$ 

$$, A_{3,2} = \prod_{i=3}^{2} \frac{1}{(\mu_i - \mu_3)}, i \neq 3$$
$$= \frac{1}{\mu_2 - \mu_3} = -\frac{1}{2}$$

$$\therefore p_2(t) = 5 \left[ \frac{1}{2} e^{-3t} - \frac{1}{2} e^{-5t} \right]$$
 (II)

For n=1 (2)  $\Rightarrow$  p<sub>1</sub>(t)= $\mu_2\mu_3$   $\left[A_{1,1}e^{-\mu_1t}+A_{2,1}e^{-\mu_2t}+A_{3,1}e^{-\mu_3t}\right]$ 

$$(3) \Rightarrow A_{1,1} = \prod_{i=3}^{1} \frac{1}{(\mu_i - \mu_1)}, i \neq 1$$

$$= \frac{1}{(\mu_3 - \mu_1)(\mu_2 - \mu_1)} = \frac{1}{3}$$

$$A_{2,1} = \prod_{i=3}^{1} \frac{1}{(\mu_i - \mu_2)}, i \neq 2$$

$$= \frac{1}{(\mu_3 - \mu_2)(\mu_1 - \mu_2)} = -\frac{1}{2}$$

$$A_{1,1} = \prod_{i=3}^{1} \frac{1}{(\mu_i - \mu_2)}, i \neq 3$$

, 
$$A_{3,1} = \prod_{i=3}^{1} \frac{1}{(\mu_i - \mu_3)}$$
 ,  $i \neq 3$   
=  $\frac{1}{(\mu_2 - \mu_3)(\mu_1 - \mu_3)} = \frac{1}{6}$ 

$$\therefore p_1(t) = 15 \left[ \frac{1}{3} e^{-2t} - \frac{1}{2} e^{-3t} + \frac{1}{6} e^{-5t} \right]$$
 (III)

Using (I), (II) and (III) we can get  $p_0(t)$  as follows

$$\therefore p_0(t) = 1 - [p_1(t) + p_2(t) + p_3(t)]$$

$$= 1 - \left[ 5e^{-2t} - \frac{15}{2}e^{-3t} + \frac{5}{2}e^{-3t} + \frac{5}{2}e^{-5t} - \frac{5}{2}e^{-5t} + e^{-5t} \right]$$

$$= 1 - 5e^{-2t} + 5e^{-3t} - e^{-5t} \qquad (IV)$$