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Answer the following questions: 

Q1: [4+5] 

a) For the Markov process  tX ,  t=0,1,2,...,n  with states 0 1 2 1i , i , i ,  ... ,i ,i  n n  

Prove that:  
0 0 1 1 2 10 0 1 1 2 2 n nPr X i ,X i ,X i , ... ,X i ... 

n ni i i i i i ip P P P


     where  
0 0 0pr X iip  

 

b) Consider a spare parts inventory model in which either 0,  1,  or 2  repair parts are 

demanded in any period, with       Pr 0 0.1,  Pr 1 0.5,  Pr 2 0.4     n n n    and 

suppose s=0  and
 
S=2.  Determine the transition probability matrix for the Markov 

chain
  X ,  n where Xn  

is defined to be the quantity on hand at the end of period n. 

Q2: [3+6] 

a) Let Xn  denote the weather of the n th day with X 1n  meaning “rainy” and  

X 2n  meaning “dry”. Suppose that  Xn  , 0,1, 2,...n   evolves as a Markov chain 

whose transition probability matrix is  

1 2

1 0.6 0.4

2 0.3 0.7

                      

       P=   

Given that, the probability of dry weather on 1st June equals 5
8 . What’s the 

probability that the weather will be rainy on 3rd June.    

b) Determine whether the transition matrix  
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0 1 2

0 1 0 0

1 0.1 0.6 0.3

2 0 0 1

                    

    P= 

 

represents an absorbing Markov chain or not, sketch Markov chain diagram and 

then find each of the following: 

i) Starting in state 1, determine the probability that the Markov chain ends in 

 state 0. 

ii) Determine the mean time to absorption. 

Q3: [3+4] 

a) Let 
1 2 N

0                       if  N=0
X=

 ... +  if  N>0   

 
 

  
 be a random sum and assume that E( )= ,  E(N)=k    

Prove that E(X)=   

b) The number of accidents occurring in a factory in a week is a Poisson random 

variable with mean 2. The number of individuals injured in different accidents is 

independently distributed, each with mean 3 and variance 4. Determine the mean 

and variance of the number of individuals injured in a weak.  

 ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
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The Model Answer 

 

Q1: [4+5] 

a) 

 

   

 
1

0 0 1 1 2 2

0 0 1 1 2 2 1 1 0 0 1 1 2 2 1 1

0 0 1 1 2 2 1 1 i i

Pr X i , X i ,X i , ... ,X i

Pr X i , X i ,X i , ... ,X i .Pr X i X i , X i ,X i , ... ,X i  

= Pr X i ,X i ,X i , ... ,X i .P   Definition of Markov

By repeating this argume



   

 

   

         

   
n n

n n

n n n n n n

n n

 

 
0 0 1 1 2 2 1 1 0

0 0 1 1 2 2

i i i i i i i i i i 0 0

nt 1 times 

 Pr X i ,X i ,X i , ... ,X i

p P P  ... P P  where p Pr X i  is obtained from the initial distribution of the process.
  



    

  
n n n n

n n

n

b)  

   1   0    1    2   

1 0 0.4 0.5 0.1

0 0 0.4 0.5 0.1

1 0.4 0.5 0.1 0

2 0 0.4 0.5 0.1





 

Where  

( 2 ),  i 0                   replenishment

( ),  0<i 2   without replenishment

   
 

   

n
ij

n

pr j
P

pr i j




 

Q2: [3+6] 

a) Xn  , 0,1, 2,...n  denotes the weather of the n th day with X 1n  meaning “rainy” 

and  X 2n  meaning “dry” 

The probability of dry weather on 1st June equals 5
8  

0 3 5
8 8

              

 P     is the initial Prob. distribution 
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2

2

2 1

3 5
8 8

0.6 0.4 0.6 0.4

0.3 0.7 0.3 0.7

0.48 0.52

0.39 0.61

Pr( 1)

0.48

0.39

0.4238

   
   
   

 
 
 

  

 
   

 



                   

       P =   

              =

 

                      =         

                     

X P  

b) 

i) 

0 1 2

0 1 0 0

1 0.1 0.6 0.3

2 0 0 1

                    

    P= 
  

 0

1 10 11 1

1 1

1
1 10 4

0 1

0.1 0.6

  is the prob. that Markov chains ends in state 0

  

 

 

  

Tu pr X X

u p p u
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u u
 

ii)  

The mean time to absorption can be found as follows 

 0
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Q3: [3+4] 

a) 

The random sum is  

1 2 N

0                       if  N=0
X=

 ... +  if  N>0   
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0

1 2 N

1

1 2 n

1

1 2 n

1

 E(X)= [ ] ( )

        = [  ... + ] ( )

       = [  ... + ] ( ).................Prop.of cond. expectation

        = [  ... + ] ( ),  where N is indepen
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 E(X)= ( )
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b)  

2 2 2

Poisson (2)

N is the # of accidents in aweek

 is the # of individuals injured for kth accident

( ) 3,  var( ) 4

( ) 2,  var( ) 2

 ( ) 3(2) 6

var( )

 var( )=2(4)+9(2)=26
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