Second Mid Term Exam, S2 1442
M 380 - Stochastic Processes
Time: 90 minutes

Answer the following questions:

Q1: [4+4]

(a) For the Markov process $\left\{X_{t}\right\}, t=0,1,2, \ldots, n$ with states $i_{0}, i_{1}, i_{2}, \ldots, i_{n-1}, i_{n}$

Prove that: $\operatorname{Pr}\left\{\mathrm{X}_{0}=\mathrm{i}_{0}, \mathrm{X}_{1}=\mathrm{i}_{1}, \mathrm{X}_{2}=\mathrm{i}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}=\mathrm{i}_{\mathrm{n}}\right\}=p_{i_{0}} P_{i_{i_{1}}} P_{i_{i}} \ldots P_{i_{n-1} i_{n}}$ where $p_{i_{0}}=\operatorname{pr}\left\{\mathrm{X}_{0}=\mathrm{i}_{0}\right\}$
(b) A Markov chain $\mathrm{X}_{0}, \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots$ has the transition probability matrix

$$
\mathbf{P}=\begin{gathered}
\quad 0 \\
0 \\
0 \\
1
\end{gathered}\left|\begin{array}{ccc}
1 & 2 \\
2.2 & 0.3 & 0.5 \\
2 & \| .4 & 0.2 \\
0.5 & 0.4 \\
0.3 & 0.2
\end{array}\right|
$$

and initial distribution $\mathrm{p}_{0}=0.5, \mathrm{p}_{1}=0.2$ and $\mathrm{p}_{2}=0.3$ Determine the probabilities $\operatorname{pr}\left\{\mathrm{X}_{0}=1, \mathrm{X}_{1}=1, \mathrm{X}_{2}=0\right\} \quad$ and $\operatorname{pr}\left\{\mathrm{X}_{1}=1, \mathrm{X}_{2}=1, \mathrm{X}_{3}=0\right\}$

Q2: [4+4]

(a) Consider a spare parts inventory model in which either 0 , 1 , or 2 repair parts are demanded in any period, with $\operatorname{Pr}\left\{\xi_{n}=0\right\}=0.3, \operatorname{Pr}\left\{\xi_{n}=1\right\}=0.2, \operatorname{Pr}\left\{\xi_{n}=2\right\}=0.5$ and suppose $\mathrm{s}=0$ and $\mathrm{S}=3$. Determine the transition probability matrix for the Markov chain $\left\{\mathrm{X}_{n}\right\}$, where X_{n} is defined to be the quantity on hand at the end of period n.
(b) For modelling weather phenomenon, let $\left\{\mathrm{X}_{n}\right\}$ be a Markov chain with state space $\mathrm{S}=\{1,2\}$ where 1 stands for rainy and 2 stands for dry. The transition probability matrix is given by

$$
\mathbf{P}=\begin{array}{cc}
1 & 2 \\
1 \| 0.8 & 0.2 \\
2 \| 0.4 & 0.6
\end{array}
$$

Initially, assume that the probability of weather will be rainy on $1^{\text {st }}$ June equals $3 / 8$.
Find the probability for each of the following:
(i) The weather will be dry on $2^{\text {nd }}$ June.
(ii) The weather will be dry on $3^{\text {rd }}$ June.
(iii) The weather will be rainy on $5^{\text {th }}$ June.

Q3: [4+5]

(a) Suppose that the social classes of successive generations in a family follow a Markov chain with transition probability matrix given by

		Son's class		
		Lower	Middle	Upper
Father's	Lower	0.7	0.2	0.1
class	Middle	0.2	0.6	0.2
	Upper	0.1	0.4	0.5

What fraction of families are middle class in the long run?
(b) Consider the Markov chain whose transition probability matrix is given by

$$
\left.\mathbf{P}=\begin{array}{c||cccc||}
\\
0 \\
1 & 1 & 0 & 0 & 0 \\
0.1 & 0.6 & 0.1 & 0.2 \\
2 & 0.2 & 0.3 & 0.4 & 0.1 \\
3 & 0 & 0 & 0 & 1
\end{array} \right\rvert\,
$$

(i) Starting in state 1 , determine the probability that the Markov chain ends in state 0 .
(ii) Determine the mean time to absorption.
(iii) Sketch, the Markov chain diagram, and determine whether it's an absorbing chain or not.

The Model Answer

Q1: [4+4]
(a)
$\because \operatorname{Pr}\left\{\mathrm{X}_{0}=\mathrm{i}_{0}, \mathrm{X}_{1}=\mathrm{i}_{1}, \mathrm{X}_{2}=\mathrm{i}_{2}, \ldots, \mathrm{X}_{n}=\mathrm{i}_{n}\right\}$
$=\operatorname{Pr}\left\{\mathrm{X}_{0}=\mathrm{i}_{0}, \mathrm{X}_{1}=\mathrm{i}_{1}, \mathrm{X}_{2}=\mathrm{i}_{2}, \ldots, \mathrm{X}_{n-1}=\mathrm{i}_{n-1}\right\} \cdot \operatorname{Pr}\left\{\mathrm{X}_{n}=\mathrm{i}_{n} \mid \mathrm{X}_{0}=\mathrm{i}_{0}, \mathrm{X}_{1}=\mathrm{i}_{1}, \mathrm{X}_{2}=\mathrm{i}_{2}, \ldots, \mathrm{X}_{n-1}=\mathrm{i}_{n-1}\right\}$
$=\operatorname{Pr}\left\{\mathrm{X}_{0}=\mathrm{i}_{0}, \mathrm{X}_{1}=\mathrm{i}_{1}, \mathrm{X}_{2}=\mathrm{i}_{2}, \ldots, \mathrm{X}_{n-1}=\mathrm{i}_{n-1}\right\} \cdot \mathrm{P}_{\mathrm{i}_{n-1} \mathrm{i}_{n}} \quad$ Definition of Markov
By repeating this argument $n-1$ times
$\therefore \operatorname{Pr}\left\{\mathrm{X}_{0}=\mathrm{i}_{0}, \mathrm{X}_{1}=\mathrm{i}_{1}, \mathrm{X}_{2}=\mathrm{i}_{2}, \ldots, \mathrm{X}_{n}=\mathrm{i}_{n}\right\}$
$=\mathrm{p}_{\mathrm{i}_{0}} \mathrm{P}_{\mathrm{i}_{0} \mathrm{i}_{1}} \mathrm{P}_{\mathrm{i}_{1} \mathrm{i}_{2}} \ldots \mathrm{P}_{\mathrm{i}_{n-2} \mathrm{i}_{n-1}} \mathrm{P}_{\mathrm{i}_{n-1} \mathrm{i}_{n}}$ where $\mathrm{p}_{\mathrm{i}_{0}}=\operatorname{Pr}\left\{\mathrm{X}_{0}=\mathrm{i}_{0}\right\}$ is obtained from the initial distribution of the process.
(b)
i) $\operatorname{pr}\left\{\mathrm{X}_{0}=1, \mathrm{X}_{1}=1, \mathrm{X}_{2}=0\right\}=\mathrm{p}_{1} \mathrm{P}_{11} \mathrm{P}_{10}, \mathrm{p}_{1}=\operatorname{pr}\left\{\mathrm{X}_{0}=1\right\}$

$$
\begin{aligned}
& =0.2(0.2)(0.4) \\
& =0.016
\end{aligned}
$$

ii) $\operatorname{pr}\left\{\mathrm{X}_{1}=1, \mathrm{X}_{2}=1, \mathrm{X}_{3}=0\right\}=\mathrm{p}_{1} \mathrm{P}_{11} \mathrm{P}_{10}, \quad \mathrm{p}_{1}=\operatorname{pr}\left\{\mathrm{X}_{1}=1\right\}$

$$
\begin{aligned}
\operatorname{pr}\left\{\mathrm{X}_{1}=1\right\} & =\operatorname{Pr}\left(\mathrm{X}_{1}=1 \mid \mathrm{X}_{0}=0\right) \operatorname{Pr}\left(\mathrm{X}_{0}=0\right)+\operatorname{Pr}\left(\mathrm{X}_{1}=1 \mid \mathrm{X}_{0}=1\right) \operatorname{Pr}\left(\mathrm{X}_{0}=1\right)+\operatorname{Pr}\left(\mathrm{X}_{1}=1 \mid \mathrm{X}_{0}=2\right) \operatorname{Pr}\left(\mathrm{X}_{0}=2\right) \\
& =\mathrm{P}_{01} \mathrm{p}_{0}+\mathrm{P}_{11} \mathrm{p}_{1}+\mathrm{P}_{21} \mathrm{p}_{2} \\
& =0.3(0.5)+0.2(0.2)+0.3(0.3)=0.28
\end{aligned}
$$

$\therefore \operatorname{pr}\left\{\mathrm{X}_{1}=1, \mathrm{X}_{2}=1, \mathrm{X}_{3}=0\right\}=0.28(0.2)(0.4)=0.0224$
Q2: $[4+4]$
(a)

-1	0	1	2	3	
-1	0	0	0.5	0.2	
0	0.3				
0	0	0.5	0.2	0.3	
1	0	0.5	0.2	0.3	
2	0	0			
2	0.5	0.2	0.3	0	
3	0	0.5	0.2	$0.3 \\|$	

$P_{i j}=\operatorname{Pr}\left(\xi_{n+1}=S-j\right) \quad, i \leq s \quad$ for replenishment
$P_{-1,-1}=\operatorname{Pr}\left(\xi_{n+1}=4\right)=0 \quad, P_{01}=\operatorname{Pr}\left(\xi_{n+1}=2\right)=0.5$
$P_{i j}=\operatorname{Pr}\left(\xi_{n+1}=i-j\right) \quad, s<i \leq S$ for non-replenishment
$P_{1,-1}=\operatorname{Pr}\left(\xi_{n+1}=2\right)=0.5 \quad, P_{11}=\operatorname{Pr}\left(\xi_{n+1}=0\right)=0.3, P_{21}=\operatorname{Pr}\left(\xi_{n+1}=1\right)=0.2$
(b)

The Markov chain $X_{0}, X_{1}, X_{2}, \ldots$ represents the day's weather
$\because \operatorname{pr}\left(X_{0}=1\right)=p_{1}=3 / 8$
$\therefore \operatorname{pr}\left(X_{0}=2\right)=p_{2}=5 / 8$
\Rightarrow The initial probability distribution is $\left[\begin{array}{ll}3 / 8 & 5 / 8\end{array}\right]$
$\operatorname{pr}\left(X_{n}=k\right)=\sum_{j=1}^{\infty} p_{j} P_{j k}^{n}$ is the probability of the process being
in state k at time n.
(i) The prob. of weatherwill be dry on $2^{\text {nd }}$ June is

$$
\begin{aligned}
\operatorname{pr}\left(X_{1}=2\right)= & p_{1} P_{12}+p_{2} P_{22} \\
& =3 / 8(0.2)+5 / 8(0.6) \\
& =0.45
\end{aligned}
$$

(ii) The prob. of weather will be dry on $3^{\text {rd }}$ June is

$$
\begin{aligned}
& \operatorname{pr}\left(X_{2}=2\right)=p_{1} P_{12}^{2}+p_{2} P_{22}^{2} \\
& \because \mathbf{P}^{2}=\left[\begin{array}{ll}
0.8 & 0.2 \\
0.4 & 0.6
\end{array}\right]\left[\begin{array}{ll}
0.8 & 0.2 \\
0.4 & 0.6
\end{array}\right] \\
& \quad=\left[\begin{array}{ll}
0.72 & 0.28 \\
0.56 & 0.44
\end{array}\right] \\
& \begin{aligned}
\therefore \operatorname{pr}\left(X_{2}=2\right) & =p_{1} P_{12}^{2}+p_{2} P_{22}^{2} \\
& =3 / 8(0.28)+5 / 8(0.44) \\
& =0.38
\end{aligned}
\end{aligned}
$$

(iii) The prob. of weather will be rainy on $5^{\text {th }}$ June is

$$
p r\left(X_{4}=1\right)=p_{1} P_{11}^{4}+p_{2} P_{21}^{4}
$$

$$
\begin{aligned}
\because \mathbf{P}^{4} & =\left[\begin{array}{ll}
0.72 & 0.28 \\
0.56 & 0.44
\end{array}\right]\left[\begin{array}{ll}
0.72 & 0.28 \\
0.56 & 0.44
\end{array}\right] \\
& =\left[\begin{array}{ll}
0.6752 & 0.3248 \\
0.6496 & 0.3504
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
\therefore \operatorname{pr}\left(X_{4}=1\right) & =p_{1} P_{11}^{4}+p_{2} P_{21}^{4} \\
& =3 / 8(0.6752)+5 / 8(0.6496) \\
& =0.6592
\end{aligned}
$$

Another Solution:

(i) The prob. of weather will be dry on $2^{\text {nd }}$ June is

$$
\begin{aligned}
\operatorname{pr}\left(X_{1}=2\right) & =\operatorname{Pr}\left(X_{1}=2 \mid X_{0}=1\right) \operatorname{Pr}\left(X_{0}=1\right)+\operatorname{Pr}\left(X_{1}=2 \mid X_{0}=2\right) \operatorname{Pr}\left(X_{0}=2\right) \\
& =P_{12} p_{1}+P_{22} p_{2} \\
& =(0.2)\left(\frac{3}{8}\right)+(0.6)\left(\frac{5}{8}\right) \\
& =0.45 \\
\therefore \operatorname{pr}\left(X_{1}=1\right) & =0.55
\end{aligned}
$$

(ii)The prob. of weather will be dry on $3^{\text {rd }}$ June is

$$
\begin{aligned}
\operatorname{pr}\left(X_{2}=2\right) & =\operatorname{Pr}\left(X_{2}=2 \mid X_{1}=1\right) \operatorname{Pr}\left(X_{1}=1\right)+\operatorname{Pr}\left(X_{2}=2 \mid X_{1}=2\right) \operatorname{Pr}\left(X_{1}=2\right) \\
& =P_{12} p_{1}+P_{22} p_{2} \\
& =(0.2)(0.55)+(0.6)(0.45) \\
& =0.38 \\
\therefore \operatorname{pr}\left(X_{2}=1\right) & =0.62
\end{aligned}
$$

(iii)The prob. of weather will be rainy on $5^{\text {th }}$ June is

$$
\begin{aligned}
\operatorname{pr}\left(X_{4}=1\right) & =\operatorname{Pr}\left(X_{4}=1 \mid X_{2}=1\right) \operatorname{Pr}\left(X_{2}=1\right)+\operatorname{Pr}\left(X_{4}=1 \mid X_{2}=2\right) \operatorname{Pr}\left(X_{2}=2\right) \\
& =P_{11}^{2} p_{1}+P_{21}^{2} p_{2} \\
& =(0.72)(0.62)+(0.56)(0.38) \\
& =0.6592
\end{aligned}
$$

Q3: $[4+5]$
(a)

Let $\pi=\left(\pi_{0}, \pi_{1}, \pi_{2}\right)$ be the limiting distribution
\Rightarrow
$\pi_{0}=0.7 \pi_{0}+0.2 \pi_{1}+0.1 \pi_{2}$
$\pi_{1}=0.2 \pi_{0}+0.6 \pi_{1}+0.4 \pi_{2}$
$\pi_{2}=0.1 \pi_{0}+0.2 \pi_{1}+0.5 \pi_{2}$
$\pi_{0}+\pi_{1}+\pi_{2}=1$
Solving the following equations

$$
\begin{align*}
3 \pi_{0}-2 \pi_{1}-\pi_{2} & =0 \tag{1}\\
\pi_{0}+2 \pi_{1}-5 \pi_{2} & =0 \tag{2}\\
\pi_{0}+\pi_{1}+\pi_{2} & =1 \tag{3}
\end{align*}
$$

By solving equations using Cramer's rule, we get
$\Delta=\left|\begin{array}{rrr}3 & -2 & -1 \\ 1 & 2 & -5 \\ 1 & 1 & 1\end{array}\right|=34, \Delta_{0}=\left|\begin{array}{rrr}0 & -2 & -1 \\ 0 & 2 & -5 \\ 1 & 1 & 1\end{array}\right|=12$
$\Delta_{1}=\left|\begin{array}{rrr}3 & 0 & -1 \\ 1 & 0 & -5 \\ 1 & 1 & 1\end{array}\right|=14, \Delta_{2}=\left|\begin{array}{rrr}3 & -2 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 1\end{array}\right|=8$
$\therefore \pi_{0}=\frac{\Delta_{0}}{\Delta}=\frac{6}{17}, \pi_{1}=\frac{\Delta_{1}}{\Delta}=\frac{7}{17}, \pi_{2}=\frac{\Delta_{2}}{\Delta}=\frac{4}{17}$
\therefore The limitting distribution is $\pi=\left(\pi_{0}, \pi_{1}, \pi_{2}\right)=(6 / 17,7 / 17,4 / 17)$
\therefore In the long run, approximately 41.2% of families are middle class.
(b)

$$
\left.\mathbf{P}=\begin{array}{c||cccc}
& \begin{array}{c}
0 \\
0
\end{array} & 1 & 2 & 3 \\
1 & 0 & 0 & 0 \\
1 & 0.1 & 0.6 & 0.1 & 0.2 \\
2 & 0.2 & 0.3 & 0.4 & 0.1 \\
3 & 0 & 0 & 0 & 1
\end{array} \right\rvert\,
$$

$u_{i}=\operatorname{pr}\left\{X_{T}=0 \mid X_{0}=i\right\}$ for $\mathrm{i}=1,2$,
and $v_{i}=\mathrm{E}\left[T \mid X_{0}=i\right] \quad$ for $\mathrm{i}=1,2$.
(i)

$$
\begin{align*}
& u_{1}=p_{10}+p_{11} u_{1}+p_{12} u_{2} \\
& u_{2}=p_{20}+p_{21} u_{1}+p_{22} u_{2} \\
& \Rightarrow \\
& u_{1}=0.1+0.6 u_{1}+0.1 u_{2} \\
& u_{2}=0.2+0.3 u_{1}+0.4 u_{2} \\
& \Rightarrow \\
& 4 u_{1}-u_{2}=1 \tag{1}\\
& 3 u_{1}-6 u_{2}=-2 \tag{2}
\end{align*}
$$

Solving (1) and (2), we get

$$
u_{1}=\frac{8}{21} \text { and } u_{2}=\frac{11}{21}
$$

Starting in state 1 , the probability that the Markov chain ends in state 0 is

$$
\begin{aligned}
u_{1}=u_{10} & =\frac{8}{21} \\
& \approx 0.38
\end{aligned}
$$

(ii) Also, the mean time to absorption can be found as follows

$$
\begin{aligned}
& v_{1}=1+p_{11} v_{1}+p_{12} v_{2} \\
& v_{2}=1+p_{21} v_{1}+p_{22} v_{2} \\
& \Rightarrow
\end{aligned}
$$

$$
v_{1}=1+0.6 v_{1}+0.1 v_{2}
$$

$$
v_{2}=1+0.3 v_{1}+0.4 v_{2}
$$

$$
\Rightarrow
$$

$$
\begin{equation*}
4 v_{1}-v_{2}=10 \tag{1}
\end{equation*}
$$

$3 v_{1}-6 v_{2}=-10$
Solving (1) and (2), we get
$v_{1}=v_{2}=\frac{10}{3}$

$$
\begin{aligned}
\therefore v_{1}= & v_{10}=\frac{10}{3} \\
& \approx 3.3
\end{aligned}
$$

(ii) It's an absorbing Markov Chain.

Markov Chain Diagram

